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COMPLEMENTS TO AN INVERSION FORMULA
D. V. WIDDER, Harvard University

1. Inthe last chapter of [1] we discussed the inversion of the integral transform

2[00,

T x2+t2

(L1 flx) =

We illustrate the formula by an example. A simple special case of (1.1) is provided by

fx)=e"7% ¢(1) =sint:

) tsint
(1‘2) = f xZ + tZ
See formula (15), p. 65, of [2], for example. The inversion procedure consists of
expanding f(x) in power series, cancelling the even powers, and changing alternate
signs in the resulting series, whose sum is then ¢(x). Thus, for (1.2) we have:

2 x3 4

Step 1: f(x)=e " =1 — X+Er—'—§"—+ 71

x3 x5
Step 2: — X - "'3‘*!- - -5*!' -
x3 x5
Step 3: ¢(x)=sinx= + x BETe +~5-!——...
More precisely, if
Jx) = X ax""
then
(1.3) p(x)= X a [sm (o0 — n)] X",
n=0

In this note let us inquire what change in the procedure is needed if the kernel
t/(x? + t?) of (1.1) is replaced by x/(x? + t?):

2 M x
(1.4) S0 = = fo e,

Of course this is really no essential change, for it is easy to see that if [¢(t),f(x)] form
a transform pair for (1.1), then [t¢(t),xf(x)] do so for (1.4). Thus ¢(t) =t sin f,
f(x) = xe”* satisfy equation (1.4). What must the multipliers sin [(7/2)(« — n)] of
equation (1.3) be replaced by in the new situation?
2. To answer the question in the context of the general theory of which it is a
1


http://www.jstor.org/page/info/about/policies/terms.jsp

2 MATHEMATICS MAGAZINE [Jan.-Feb.

part let us employ some elementary operational calculus. First note that the two
transforms are special cases of

@.1) fx) = fo wK(—):) ?Lt(’_)dz.

This equation reduces to (1.2) if K(x)=(2/z)/(x*+ 1) and to (1.4) if K(x) =
(2/m)x/(x? + 1). It is equivalent to

fe™) = f_w K(e T Y p(e™hdt,

or to the general convolution transform

90

G()YD(x —t)dt

22 F(x) = f " 60 = @)1 = f
if we set

F(x) =f(e™), G(x) = K(e™), ®(t) = ¢(e™").

Now denote by the letter D the operation of differentiation with respect to x.
Define ¢°? as a translation through distance a:

(2.3) ePP(x) = ¢(x + a).

This is reasonable in the light of Maclaurin’s expansion

ePO(x) = X —0"(x) = D(x + a).

We treat only the special cases of (2.2) in which G has a bilateral Laplace trans-
form, and we denote the reciprocal thereof by E(D),

L7
E(D) f_we G(t)dt.

By (2.3) e~*? should represent a translation through distance — t and we may define
the operator 1/E(D) as

2.4) E—Z_))CI)(x) - f_we-”’ G(1)dt D(x) = f_w O(x — 1) G()di = F(x).

Treating D as a number, in the fashion of operational calculus, (2.4) becomes
(2:5) (x) = E(D) F(x),

and we have inverted (2.2). This assumes that we have a suitable interpretation for
the operator E(D). It has been shown [3] for a large class of kernels G, which includes
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those of this note, that interpretation via an infinite product expansion is effective.
Let us compute E(D), first for the kernel K(x) = (2/n)/(x? + 1):

1 2 <) e—tD 1 ooyD/2 1 o
(2.6) ED) =n f_w1+e-2'dt‘"7?fo Try vl
E(D) = L = sin —D.

D D ) 2
r(3)r( -7
Here we have used formulas 497 and 798 of [4], for example. For the kernel
K(x) = (2/m)x /(x> + 1) we have
© =tD =t
d 2 (T e 4
ED) =n J_,1+e?

This is the integral (2.6) with D replaced by (D + 1) so that E(D) here becomes
sin [(n/2) (D + 1)] =cos=D/2, and (2.5) is

2.7 (cos fg-) [ K(e=**") (e~ ")t = ¢p(e™).

- a0
Since Df(e™*) = — e~ %f'[(e”*) we can obtain the same result by introducing a new
operator 8§ = — xD and at the end replacing x by e™™:

Of(x) = = xDf(x) = = Xf'(¥) |sme-r = — €7 "(e7).
Powers of 6 will stand for iteration of the operator:
on = 0[] n=273,4,..

We can thus be rid of the exponential functions in (2.7), and that equation becomes
cos T 0) 2 [ X gt = 9.
2 ) w x2 + 12

3. As noted above we realize the operator cos nf /2 by use of the infinite product
expansion

3.1 cos—-— = H ( (2k02 1)2)

k=1

See, for example, formula 896 of [4]. Noting that
Ox* = — x(ax*"1) = — ax*
@+ a)x*=(—a+ a)x’,
or more generally for any polynomial P(f) that

P(0)x* = P(—a)x",
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we see by use of the limit implied in (3.1) that

2 2
Hence if f(x), as defined by (1.4), has the expansion

o na\ ,
cos——x%= | cos— | x*.

3.2) f(x) = E ax""*
n=0

we would expect that

@

3.3) ¢(x) = cos %9 f(x)= X a, [cos%(cx - n)] x""%,

n=0

Before discussing the validity of this result let us illustrate it by an example.
By partial fractions or by the theory of residues it is easy to show that

x 2 x 12 dt
1+x"nj; X2+12 241
so that f(x) = x/(1 + x), ¢(t) =t2/(t* + 1) provide a transform pair for (1.4). But

X
4 e x — x2 4 xd — x4
(3.4 TTx=%"% + x> —x*+

The exponent « of (3.2) is here zero and the multipliers of (3.3) are coszn/2: 1,0,
-1,0,1,-.-, so that (3.4) is transformed into

2_ 4+x6_..-=_§j—= ()
o x2 41 $(x),

as predicted.

4. Rather than justify equation (3.3) as was done for the corresponding one in [1]
we show directly the relation between the operators cos /2 and sin =8/2. This
computation will be only a special case of general theory (Lemma 10.2b, p. 80 of
[3]), but the reader may find the calculation of interest as applied to the familiar
trigonometric functions.

As noted above, if [¢(x),f(x)] are a transform pair for (1.1) then [x@(x), xf(x)]
form a pair for (1.4). By [3]

0
(sin 577 = 00,
and from the above operational considerations we expect
(cos -1;—9—) xf(x) = x¢(x).

Eliminating ¢(x) we would have
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4.1) x ( sin —gg) f(x) = ( cos—n2—9-)xf (x),

at least when f(x) is defined by equation (1.1). We show now that this result is true
for more or less arbitrary functions.

TueoreM 1. Equation (4.1) is true when either side exists.
Froni (3.1) we have
0 . - 0 \ [ 0
. —— = lim —_—— W)
@2 cos G- =tim 1 (1-525) (14507

Let us note first the action of the operator (1 + af) when applied to the product
xf(x):

(4.3) (1 + ab) xf(x) = xf — ax[xf]" = xf — axf — ax*f’

=x[(1—-a)f+abf]=(01 — a)x[l + i——g—;@]f(x), a#l,
“4.4) (1 + O)xf(x) = xf — xf — x*f" = x0f (x).
For example

(1 +—;—9)xf=—‘51-x(1 +§-)f.

L / 3

In computing (4.2) operators like (4.3) and (4.4) will be applied successively. After
each stage a factor x will appear so that (4.3) will be applicable to the next stage,
replacing f by the other factor just obtained. Thus

1+ 0)xf =x6f
A-0)xf=(1-0) x0f=2x(1 ——g—)ﬂf.

If we abbreviate this process by simply indicating the new operational factor in-
troduced at each stage, we have

1 +0 ~ 0
1-0 ~2(1~g}

o 9)
1+~3- ~ (1‘*‘5

R I R R R
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1+ 0 2n -2 (1 + 0 )
2n—1 2n—1\" 2n-2
1 — 6 N 2n 1 __L
2n — 1 2n -1 2n
" 6 0
kl;[l (1 —5%'—1) (1 +2k—1)

2 2 4 4 2n-2 2n ( 6\t 0 0
~ 2 . 0 1
1335 m-i2n- +2n),£[1 (1 2k) (1 +2k)
The numerical factor on the right is the familiar product of Wallis which tends to
7/2 as n becomes infinite, p. 376 of [5], so that the right hand side tends to

T 0? . nb

2 IJ ( (2k)2) S5
formula 895 of [4]. This completes the proof of the theorem and thus validates the
conjecture (3.3) through the proofs in [1].

5. The transform (1.4) bears the same relation to the cosine transform as (1.1)
does to the sine transform, p. 232 of [1]. We state the result without proof and
illustrate it.

THEOREM 2. If ¢(t) is continuous and absolutely integrable on (0,0) and if

(5.1) f(x) = —2n— J;wqb(t)cosxtdt,
then
(5.2) cos 3325 L e (1)t = ().

The classical inversion of (5.1),
B(t) =f f(x)cosxt dx,
0

p. 49 of [6], is not applicable under present hypotheses since it requires some local
condition on ¢(¢) like bounded variation.
As an example of Theorem 2 consider

] — 42
xe'”:if —l—L——cosxtdt
n Jo (1+412)?

One way to obtain this is to use formula (11), p. 8, of [2],

—ax 2 r- a
e = — Y
n Jo 4 + 2
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and differentiate with respect to a. Equation (5.2) becomes

cos 0 we”"te"dt—coslo— 1
2 Jo B 2 (x+1)?

= COos % [1—2x+3x% —4x3 +---].

With the cosine multipliers 1, 0, —1, 0, --- this series becomes
1—x?

1 —3x24+5x*—7x% + ... = (1—:;—2?=¢(x)

For this simple example the classical inversion is applicable:

A-x*
T ¥ x2)e

See formula (5), p.14 of [2].

o0
= J. t e ‘cos xt dt.
0
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THE HEPTAGONAL TRIANGLE

LEON BANKOFF, Los Angeles, California and
JACK GARFUNKEL, Forest Hills High School, N. Y.

Three vertices of a regular heptagon can be connected to produce four distinct
species of triangles, three of them isosceles and the fourth scalene. The latter, which
we shall call ‘‘the Heptagonal Triangle’’, is uniquely characterized by vertices whose
angles, A = n/7, B = 2xn/7, C = 4x/7, belong to a geometric progression with a
common ratio of 2. A survey of the properties of this triangle will provide a better
understanding of the regular polygon from which it is derived.

Since the earliest days of recorded mathematics, the regular heptagon has been
virtually relegated to limbo. One could easily conjure up a variety of plausible reasons
for this neglect. For example, unlike the equilateral triangle, the square and the
regular pentagon, the regular heptagon cannot serve as a face of a regular polyhedron
and as a result has had rather limited exposure to public view. Unlike the regular
pentagon and the regular decagon, its properties, though striking, do not approach
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those associated with the Divine Proportion, a ratio second only to = in mathematical
significance. Furthermore, unlike the equilateral triangle, the square and the regular
hexagon, it has not enjoyed centuries of ornamental utility as a tiling for plane
surfaces. To militate further against the acceptance of the heptagon into the com-
munity of familiar polygons, mathematicians have shown an aversion toward the
study of the seven-sided figure perhaps because of their understandable inability
to construct the figure with the well-known conventional Euclidean tools. But
nonconstructibility is not necessarily synonymous with nonexistence, although many
a frustrated scholar may have suspected this to be the case after a fruitless quest
for heptagon material in the literature of mathematics.

The history of research on the regular heptagon from ancient times until
the end of the nineteenth century could easily be encapsulated in one short para-
graph. According to Arabian sources, Archimedes is believed to have written a
book on the heptagon inscribed in a circle. If it is true that this work ever existed,
it now seems to be irretrievably lost. Still, the question of its having been written
appears credible because of a single surviving proposition, namely a ‘‘neusis’’ or
‘“‘verging’’ construction of a regular heptagon. Archimedes accomplished this
brilliant feat by using a marked instead of an unmarked ruler and by placing a certain
line segment of definite length at a specially manipulated position in relation to
certain other points and lines. Details elucidating this vague description may be
found in Heath’s Manual of Greek Mathematics on pages 340-2 of the Dover
reprint. The same source describes Heron’s approximate construction in which
the apothem of an inscribed regular hexagon is considered to be almost equal to
the side of a regular heptagon inscribed in the same circle. The apothem is equal
to approximately 0.866026 times the side of the hexagon and would have to be
stretched to only 0.867726 in order to qualify in a practical way as the side of the
heptagon. Except for a downright silly and fallacious construction published by
Thomas Hobbes, the eminent English philosopher, in his book entitled A Garden
of Geometrical Roses, printed in London in 1727, the literature on heptagons is
utterly barren. In 1796 the researches of the 19-year old Gauss inadvertently lent
a hand in consigning the heptagon to oblivion simply because 7 happens to be a prime
number that cannot be expressed in the form 22" + 1. In other words, the study
of the regular heptagon was further discouraged by the belated proof of its non-
constructibility with ruler and compasses.

In 1913 the late Victor Thébault of Tennie, France, directed his attention to an
investigation of the long dormant heptagon and succeeded in bringing to light many
surprising properties of great esthetic interest. He was attracted to this venture by
the example set by Morley’s theorem, a beautiful proposition that arrived rather
late on the geometrical scene probably because of the unconscious taboo associated
with the forbidden angle trisection. (Morley’s theorem states that the intersections
of the adjacent internal or external trisectors of a triangle are vertices of an equi-
lateral triangle.) The purpose of this paper is to assemble a number of Thébault’s
more interesting discoveries and to make available in English the essence of material
hitherto published only in French. A further purpose is to offer some original
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theorems and to review several heptagon problems, particularly those involving
theorems previously published without proof in various editorial notes.

We start with a problem that exhibits a startling connection between the regular
heptagon and the square inscribed in the same circle. (See the AMERICAN MATHE-
MATICAL MONTHLY, problem E 1154, 1955, 584). While it shows how the side of an
inscribed square can be precisely derived from elements of an inscribed regular
heptagon, it offers no encouragement to wishful mystics who may still be yearning
for the feasibility of the reverse procedure. The proposal offered by Victor Thébault
was as follows:

The distance from the midpoint of side AB of a regular convex heptagon
ABCDEFG inscribed in a circle to the midpoint of the radius perpendicular to BC
and cutting this side, is equal to half the side of a square inscribed in the circle.
(Figure 1.)

Two solutions were published, one invoking the cosine law and the other using
complex numbers. In the first solution, let d denote the required distance, R the
circumradius and 6 = =/7. By the cosine law, we have

d* = R*(1/4 + cos?6 — cos 6 cos20).
Since sin360 = sin40, it follows that

3sinf — 4sin®0 = 4sinfHcoscos20,
which reduces to
™ cos2 0 — cosfcos260 = 1/4.
Hence d = R/2/2.
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(Note. The relation indicated by (*) applies uniquely to the regular heptagon
and will be used later in this paper in the development of other heptagon properties.
Indeed, it holds if 0 is replaced by nf, where n is any integer or zero.)

The second published solution, offered by Hiiseyin Demir, designates the vertices
F,G,A,--,E as the affixes of the 7th roots 1, e, e2,---,e® of unity. Then the mid-
points U, V, of AB and the concerned radius correspond to u = (e? + ¢%)/2 and
v = —1/2, whence

UV2 = (u—0)(a@—5) = (1+e2+e3(1+e* +e%)/4

I

= Q+1+e+-+e4d=1)2,

thus establishing the proposition.

Extending this method to diagonals, Demir states the following: The midpoints
of the sides of the hexagon ABGDCEA are equidistant from the point V, the common
distance being half the side of the inscribed square. This means that the circle of
radius UV, centered at V, bisects the segments AB, BG, GD, DC, CE, and EA.
Since the midpoints W, X of BG and AE are symmetrical to those of CE and DG
with respect to the diameter through V, the proof of this corollary may be abbreviated
by showing that VW = VX = UV. The method of the first solution is also applicable
to this proof.

Thébault mentioned the following additional properties of the regular heptagon
ABCDEFG. Let O be the center of the heptagon, W the midpoint of OF, M the
point diametrically opposite F, U the midpoint of AB, V the midpoint of OM,
and J the point on UB produced such that UJ = UM (Figure 2). Then:
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(1) UW is equal to the diagonal of the square constructed on an apothem of
the heptagon as a side.

(2) 0J is equal to the diagonal of the square constructed on half the side of the
inscribed equilateral triangle.

(3) UV is tangent to the circle through U, O, W.

The proofs of (1) and (2) are easily obtained by the use of the identity (*). The
relation VO - VW = UV? proves (3).

The impact created by these astonishing relationships is evidenced by the edi-
torial comment: ““‘One cannot help but wonder if these properties, and the property
of the problem, are just remarkable geometric accidents, or whether they are special
cases of more general theorems involving, perhaps, other regular polygons. Karst
did some work on the regular inscribed nonagon ABCDEFGHI . Here, if U is the
midpoint of side 4B and V is the midpoint of the radius perpendicular to and
cutting side BC, it can be shown that angle OUV = 30°.”

In response to an inquiry about the origin of these unusual discoveries, a letter
from Thébault dated January 3, 1956 offered the following explanation and inci-
dentally revealed two additional relationships resembling the one in problem E 1154:

“Let ABC be the triangle in which A = n/7, B = 2zr/7, and C = 4xn/7. Let M
be the point of intersection of the internal bisector of 4 with the circumcircle (O)R;
let N be the point of intersection of (O)R with the internal bisector of B. The triangle
MCN is curious—also the quadrangle OMCN. For the latter—the squares of
the bimedians (lines joining the midpoints of the opposite sides) have as expressions:
R?/2 (E 1154), MN?/2, MC?/2. That is the origin of E 1154 --->’ (Figure 3).

FiG. 3.

To assist those seeking to verify the relationships mentioned by Thébault, we
note that one of the bimedians connects the midpoints of the diagonals MN
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and CO . The proofs make generous use of the formula (*) in addition to a judicious
manipulation of the sine and cosine sum-to-product identities.

Additional properties of the heptagonal triangle.

1. The sum of the squares of the sides of the heptagonal triangle is equal
to TR?, where R is the circumradius of the triangle.

Applying the sine law to the sides a, b, ¢ opposite the angles 4 = =/7, B = 2n/7,
C = 4n/7, and converting the resulting sine ratios to the corresponding cosines,
we obtain

(**) cosA = b/2a cosB = ¢/2b cosC = —a/2c,
so that cosAcos BcosC = —1/8. Then
a? 4+ b2 + ¢? = 4R?(sin%A4 + sin? B + sin? C)
= 4R2(2 + 2cos Acos BcosC)
= 4R?*(7/4) = TR2

Other methods of solution may be found in the February 1957 issue of the
AMERICAN MATHEMATICAL MONTHLY, pp. 110-112, problem E 1222.

2. If A', B', C’ denote the feet of the altitudes from A, B, C, the orthic triangle
A’B’C’ is similar to triangle ABC and each side of the former is half the length
of the corresponding side of the latter. (Figure 4.)
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In the cyclic quadrilateral CB’BC’, angle A'C’'B’/2 = angle CBB’ = 90°— A — B
= n/14 = A/2. Similarly, angle A’'B'C’' = C and angle B’A’C’' = B. Thus the
triangles are similar. Observe that the circumcircle of triangle 4’B’C’ is the nine-
point circle of triangle ABC. Since the radius of the nine-point circle is half that
of the circumcircle, all the linear elements of the orthic triangle are half those of
the corresponding elements of the parent triangle.

The heptagonal triangle is the only obtuse triangle displaying orthic similarity.
As for acute triangles, the equilateral triangle is the only one similar to its orthic
triangle. Here agdin, strangely enough, the ratio of similitude is 2. A problem relating

to orthic similarity is number 681, on page 219 of the September 1968 issue of this
MAGAZINE.

3. If a, b, c are the sides of the heptagonal triangle ABC in which C = 2B = 44,
the side a is half the harmonic mean of the other two sides.

Since 4 = n/7, it follows that sin34 = sin44. Then

sin2A4 sin2A4sin4A4 sin2Asin4A4

2cosA  2cosAsin3A  sin2A +sindAd

sind =

With a/sin4 = b/sinB = ¢/sinC = 2R, we obtain a = bc/(b + ¢), the required
result. Equivalent expressions for b and ¢ are b = ac/(c — a) and ¢ = ab/(b — a).

See problem 189 in the Spring 1968 issue of the Pi Mu Epsilon Journal for
two other treatments of the solution.

4. If h,, hy, h, are the altitudes to the sides a, b, ¢ of the heptagonal triangle
ABC, then h, = hy, + h,.

Expressing the results of the preceding property in the form 1/a = 1/b + t/c
and using the relations h, = 2S/a, h, = 2S/b, h, = 2S/c, where S is the area of
triangle ABC, we obtain the result h, = h, + h,.

5. The following list of fundamental properties of the heptagonal triangle will
be useful in deriving others. In each case, A = n/7, B = 2x/7 and C = 4x/7.

sinAsinBsinC = \/7/8.

sin?4 + sin?B + sin?C = 7/4.

sin24 + sin2B + sin2C = /7/2.

sin? A sin?Bsin?C = 7/64

sin24sin? B + sin?4 sin? C + sin?Bsin?C = 7/8
cos AcosBcosC = —1/8.

cos24 + cos?B + cos’C = 5/4

c0s2A4 cos?B + co0s?A4 cos2C + cos2Bcos? C = 3/8.
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cos2A4 + cos2B 4+ cos2C = —1/2
sind + sinB + sinC = /(7/2)
tanAtanBtanC = —,/7.

cotA + cot B + cotC = /7.
csc?A + csc?B + cscC = 8.
sec?4 + sec’B + sec’C = 24.
cot?4 + cot’B + cot’C = 5.
tan4 + tan?B + tan®C = 21.
sec*4 + sec*B + sec*C = 416.
cos*4 + cos*B + cos*C = 13/16.
sin*4 + sin*B + sin*C = 21/16.
csc*A + csc*B + csc*C = 32.

sec2A4 + sec2B + sec2C = —4.

To obtain the above relations various methods are available. For example, one
can start with the expansion of sin 7x in terms of powers of sin x to obtain the equa-
tion

64x7 — 112x° + 56x3 — 7x = 0,

the roots of which are 0, + sinn/7, =+ sin2n/7, + sin4n/7. Then the fractions
7/4, 7/8, 7/64 represent the sums of sin®4, sin’B and sin?C taken one, two and
three at a time.

Similar procedures combined with the use of well-known standard trigonometric
identities lead to expressions involving the other trigonometric functions.

6. The sum of the squares of the altitudes of the heplagonal triangle is equal
to half the sum of the squares of the sides of the triangle.

To prove that .2 + h,>2 + h,> = (a® + b* + ¢?)/2 convert the altitudes and the
sides to their trigonometric equivalents in terms of sines and substitute the numerical
values already obtained for X sin?4sin?B and for X sin? A.

7. The cotangent of the Brocard angle V of the heptagonal triangle is equal
to /7.

Here again we make use of previously derived results. If S denotes the area and
V the Brocard angle of the heptagonal triangle ABC, cot V=cot A+ cot B+cot C
= (a%? + b% + ¢?)/4S. The terms of this identity correspond to their numerical
equivalents given in paragraph 5.

8. If a, b, c are the sides of the heptagonal triangle ABC, then b? — a* = ac,
¢ —b? = ab, and c* — a® = be.
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Applying the relation a = ccos B+ bcosC to the values of cosB and cosC
used in (**) of paragraph 1, we obtain a = (¢2 4+ ab — b?)/2b, which reduces to
ab = ¢? — b2. Similarly, b?> — a® = ac and ¢ — a® = bc.

Combining these results and the relation sin?x = 1 — cos?xwith the values of
the cosines in terms of the sides given in property (**), we obtain sin?4 = (3a—c)/4a,
sin?B = (3b—a)/4b and sin?C = (3c—b)/4c.

9. In the heptagonal triangle ABC whose sides are a, b, ¢, we have

b2  ¢*  a?

Ztpta =3

This follows immediately from (**), where bja = 2cosA, c¢/b = 2cosB and
ale = —2cosC.

10. If a, b, ¢ are the sides of the heptagonal triangle, then

L1 12
a? bz 2 R?

This is a direct consequence of the relation csc24 + csc?B + csc2C = 8, a prop-
erty listed in paragraph S.

11. If A’, B’, C' are the feet of the altitudes issuing from the vertices A, B, C
of the heptagonal triangle, then BA'- A'C = ac/[4, CB’'-B'A = ab/4, and
AC’ - C'B = bc/4.

This property follows from (**) of paragraph 1.

12. T he exradius r, relative to the vertex A of the heptagonal triangle ABC
is equal to the radius of the nine—point circle of triangle ABC. (Figure 5).

Let M, N, P denote the contacts of the excircle (I,)r, with the sides AC, CB,
AB respectively. The sides of the triangle MNP are parallel to those of the orthic
triangle A’B’C’ because their corresponding sides are perpendicular to the same
angle bisectors of the heptagonal triangle ABC. Hence the triangles ABC, A'B’'C’
and MNP are similar.

The line NP meets AC in Q and the triangles MAP, MQP, QAP and MQN are
isosceles. It follows that

AP = AM = AQ +QM = QP+ 0OM = ON + NP+ QM = MN + NP + PM

and the triangles A'B’'C’, MNP, having the same perimeter, are equal; their circum-
circles have the same radius.
The Euler relation then gives

01, = R?+2Rr, = 2R?,

R being the radius of the circumcircle of triangle ABC. Thus [, is situated on the
orthoptic circle of the circle (0), that is, the circle concentric with (0) and with a
radius equal to R,/2.
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The equality of the triangles A’B’C’ and MNP permits us to say that the lines
NC’, PB’ and M A’ are tangent to the nine-point circle and that the quadrilaterals
MA’'C'P, MB'C’N and PB'A’N are parallelograms.

13. The internal angle bisectors of the angles C and B are equal respectively
to the difference of the two adjacent sides; the external angle bisector of A is equal
to the sum of the adjacent sides.

From B draw a perpendicular to the internal bisector of angle A, cutting BC
in K; the triangles KAB, KCB and KFB are isosceles, where F is the foot of the
internal bisector of angle B. We then find that

AB = AK = AF + FK = BF + KB = BF + BC,

whence BF = AB — BC.
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Similarly, we have CG = CA — BC, where CG is the internal bisector of angle C;
also, AL = CA + AB, AL being the external bisector of angle 4.

14. The triangle formed by joining the feet of the internal angle bisectors
of the heptagonal triangle ABC is isosceles. (Figure 6.)

E

=

FI1G. 6.

Let D, E, F denote the feet of the interval angle bisectors issuing from 4, B, C.
We combine the relations ¢ = ab/(b—a) and ab = ¢? — b? of sections 3 and 8
respectively to yield b/(a + ¢) = ¢/(b 4+ ¢). Now EC = ab/(a + ¢)and BD=ac/(b+c).
Hence EC = BD. Also, FB = FC, since the base angles FBC and FCB are each
equal to 2z/7. With the equality of angles FCE and FBC, the triangles FCE and
FBD are congruent and FE = FD.

15. The orthic triangle A'B'C’ and the medial triangle M M ,M, are con-
gruent and in perspectivé. (Figure 7.)

The orthic similarity of the heptagonal triangle (with the ratio of similitude
equal to 2) establishes the congruency of triangles A'B’C’ and M,;M,M,. Since
the vertices of the two triangles are six points of the nine-point circle, the parallelism
of the lines C'M,, M3B’ and M,A’ is easily established by noting the equality of
the angles C'M,B, M,A'B and (M3B’, A’'B). An interesting sidelight is the inverse
similarity of the triangles A’C'M, and A’B'C’.

16. The triangle 11,1, formed by the incenter of the heptagonal triangle and
the excenters relative to B and C is similar to thetriangle ABC, to its orthic triangle
and to the pedal triangle of the nine-point center of triangle ABC. (Figure 8.)

The proof follows easily from the comparison of angles in the cyclic quadrilaterals
I,AIC and I_,BIA.

17. The properties in this section are stated without proof. Most of the deriva-
tions are not difficult.
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FiG. 7.

Fic. 8.
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(a) The first Brocard point of the heptagonal triangle is the center of the nine-
point circle and the second Brocard point lies on this circle.

(b) The segment of the Euler line contained between the circumcenter and the
orthocenter is equal to the diagonal of the square constructed on the radius of the
circumcircle. Stated differently, OH = R./2.

(c) The segment connecting the incenter and the orthocenter of the heptagonal
triangle is measured by the relation IH? = (R? + 4r?)/2.

(d) The two tangents from the orthocenter to the circumcircle of the heptagonal
triangle are mutually perpendicular.

(e) The center of the circumcircle of the tangential triangle coincides with the
symmetric of the point O with respect to H .

(f) The altitude from B is half the length of the internal bisector of angle 4.

The properties we have considered do not by any means exhaust the curiosities
associated with the heptagonal triangle. The references listed at the end of this paper
should be of assistance to any reader able and willing to explore the subject further
in French journals.

Following the example set by Heron in offering an approximation to the side
of a regular heptagon by using the apothem of a regular hexagon, we add a few
oddities of our own:

(a) If I is the incenter of the heptagonal triangle ABC, BI is a good approxima-
tion for the side of a regular enneagon inscribed in the same circle.

(b) One-third of the length of the median to side BC is a good approximation
for the side of a regular hendecagon inscribed in the same circle.

(c) Denoting the centroid of the heptagonal triangle by G and the circumcenter
by O, the segment OG is a good approximation for the side of a regular triskadecagon
inscribed in the same circle.

We conclude with the observation that the heptagonal triangle results when the
three ‘‘quadratic residue powers’ p!, p*, p? of the primitive 7th root of unity,
p = ™7, are connected by line segments in the complex plane. This suggests
generalizations of the heptagonal triangle to the convex polygons spanning the
rth-power-residues among the nth roots of unity, and relates the subject intimately
to Gaussian Sums.

References

As mentioned in the text, expository material on the heptagonal triangle has until now been
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sis, 1913-204; 1938-169; 1950-344; 1955-78 and 329; 1956106 and 149.


http://www.jstor.org/page/info/about/policies/terms.jsp

INFINITESIMALS AND INTEGRATION
A. H. LIGHTSTONE, Queen’s University and Yale University

1. Number systems. As Leibniz and his successors knew, the concepts of calculus
are easily explained, and easily grasped, if only the right number system is assumed.
The right number system is one that involves both infinitely large numbers and
infinitely small numbers. Lacking the proper mathematical tools (i.e., mathematical
logic) the mathematicians of those times were unable to demonstrate the existence
of this number system. With the demand for rigor of the nineteenth century, the
marvellous insights of Leibniz were banished from mathematics and were replaced
by the sound but abstruse constructions of Weierstrass. Of course, the engineers
and physicists who use mathematics largely ignored these innovations and con-
tinued the traditions of Leibniz, thinking in terms of infinitesimals.

In 1960 Abraham Robinson, the father of nonstandard analysis, discovered that
by forming an enormously large postulate-set, a simple application of mathematical
logic establishes the existence of a number system of the sort used by Leibniz and
his followers. The idea is to gather together all statements in the language of the real
number system (we shall characterize this language later) that are true for the real
number system #, as well as statements that collectively postulate the existence of
a number greater than each natural number, e.g., ® > 1, @ > 2, w > 3, and so on.
Now, the compactness theorem of mathematical logic asserts that a set of statements
of this sort has a model if each of its finite subsets has a model. Here, think of a
model as a number system (i.e., a set of numbers together with various concepts,
each characterized by a set, concerning that number-set), and think of a set of state-
ments as a set of axioms for this number system.

It is easy to see that the real number system itself is a model of each finite subset
S of Robinson’s postulate-set. The point is that each member of S either is a state-
ment that is true for £, or has the form w > n where ne N. Since S is finite, it
contains a finite number of statements of this form, say

(1) DO>Ny, W>Nyyoey > 1y,

Let j = max{ny,n,,---,n,} and interpret w as the natural number j + 1. The postu-
lates listed under (1) become:

2) jtl>n,, j+1>nyj+1>n.

Of course, each of these statements is true for #. This means that # is a model
of S. Thus, by the compactness theorem, Robinson’s postulate-set has a model Z*.
The number system Z* is an extension of the real number system # such that:
(a) Z* contains both infinitely large and infinitely small numbers.
(b) Each statement of our language that is true for #, is true for #* when
interpreted inZ*,
The idea of interpreting a statement in a mathematical system is not new. For
example, the statement ‘“Vx[x 4+ 0 = x]’* is true for any group ¥ provided it is

20
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interpreted in . This means that + is interpreted as the group operation of ¢,
0 is interpreted as the group identity, and the quantifier V is interpreted as referring
to the set of group elements, the supporting set of .

Traditionally, we think of a number system as involving a number-set, opera-
tions of addition and multiplication, the less than relation, and possibly certain
significant numbers, e.g., 0 and 1. For example, the natural number system is usually
regarded as the system (N, +, -, <,1) where N = {1,2,3,---}; the number 1 is
displayed because it generates all the natural numbers. The real number system is
usually represented by the system (R +, -, <, 0, 1) where R is the set of all real
numbers; here, 0 and 1 are displayed because of their widely acclaimed algebraic
properties. Now, Robinson’s idea was to include in the real number system all
concepts associated with real numbers; e.g., the power set of R, the natural numbers,
the power set of N, the concept of a finite tuple of real numbers, the operation of
summing the terms of a finite tuple, the function concept, the concept of a contin-
uous function. So we obtain an expanded real number system, which we denote
by #, namely:

(R,.@R,N,?N,’,T, +, -, <aS’F,C9"‘)'

Here T is the set of all finite tuples whose terms are real numbers, S is the opera-
tion of summing the terms of a member of T (i.e., S is the set of all ordered pairs
for which the first term is a member of T, say «, and the second term is the real
number obtained by summing the terms of «), F is the set of all functions, and C
is the set of all continuous functions.

Since Z* derives its existence from Robinson’s postulate-set, each of its con-
cepts is linked to a concept of £ (the link is the postulate-set). Indeed, each concept
of #* is an extension of the corresponding concept of # in a two-fold sense that
we shall clarify in a moment. To be specific, we regard #* as having the form:

(R*,(ZR)* . N*,(PN)*, T*, +*, *, <* S* F* (*,..-).

Here R* is a proper superset of R. We can prove that N* is a proper superset of N;
in this sense, N* is an extension of N. However, a concept’ of #* may be an ex-
tension of the corresponding concept of # in a second sense. For example, F*
contains functions that are supersets of the corresponding functions in F (e.g., the
squaring function); as well, F* contains functions that are not related in this way
to any member of F (e.g., the Dirac delta function).

The basic idea is that each concept of a number system is characterized by a set,
indeed is identified with a set. For example, the concept of addition is identified
with the mapping that associates with each ordered pair of real numbers, their
sum. At this level we are not concerned with how to determine the sum of two
numbers; rather our approach is that there is a definite number associated with a
given pair of numbers, and called their sum. This mapping, which is a set, represents
the concept of addition. Similarly, the function concept is identified with the set
of all functions.
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Since Robinson’s postulate-set is the key to #*, we now briefly outline the
language of %, the real number system. Let A be a concept of # and let a be an
object (e.g., number, tuple, function); then ‘““‘a € 4”’ is an atomic statement. More-
over, this statement is true in case the object a is a member of the set 4; otherwise,
““ac A is said to be false. For example, ““(2,3)e <”” and ‘((2,3),5)e +” are
true atomic statements. We shall abbreviate these statements by writing 2 < 3’
and ‘2 + 3 = 5, following the usual mathematical conventions.

Next, we utilize the atomic statements and the logical connectives:
~ (not), V (or), A (and),— (if --- then), < (if and only if),
Y (for each), 3 (there exists)

to construct additional statements of our language. Here is our definition:

(1) Each atomic statement is a statement.

(2) If p and g are statements, so are ~ p, p\/ ¢4, p /\ 4, p — ¢, and pgq.

(3) If P(x) is a statement-form, then ¥V x P(x) and 3x P(x) are statements.

(4) Each statement possesses only a finite number of instances of logical con-
nectives.

Here, a statement-form is an expression that yields a statement whenever its
placeholder is replaced by a suitable object; for example, ‘‘3 < x’’ is a statement-form
and yields statements such as ‘3 <7’ which is true, and ‘‘3 < 2’ which is false.
Ttis easy to formulate rules that allow us to compute the truth-value of each statement
defined in (2) and (3). For example, ~ p is true in case p is false, and is false in case p
is true; VY x P(x) is true just in case each statement P(a) obtained from the statement-
form P(x) is true.

The connectives Y and 3 are called quantifiers; V is the universal quantifier and 3
is the existential quantifier. We must realize that the objects that may be substituted
for a placeholder in a statement-form, come from a set—the set over which we
quantify; so each instance of each quantifier refers to a set of objects. Usually, each
quantifier refers to the number-set of our number system. However, we greatly
enhance the scope of our language by setting up several sets of this sort, e.g., the real
numbers, the positive real numbers, the natural numbers, the set of all subsets of R,
the set of all subsets of N, the set of all functions. Such sets are called supporting
sets of our number system. We can quantify over each supporting set as we wish,
provided that we indicate the supporting set that a particular quantifier refers to.
This can be done typographically.

Notice that our language approximates the language of elementary mathematics.
We illustrate this with some examples:

2<3
Vxy[x+y=y+x] (addition is commutative)

Vxyz[x <y Ay<z-ox<z] ( < is transitive)
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VeddVx y[] X — y] <é— , J(x) —f( y)l <g] (fis uniformly continuous)
VeanoVmn[m,n > ny — l a, — a,,l <¢] ((a,) is a Cauchy sequence)

VA[le ANVx[xeA—>x+1€A]—>A=N] (Principle of Mathematical
Induction)

Here Greek letters denote positive real numbers, lower-case Latin letters near the
end of the alphabet indicate real numbers, lower-case Latin letters near the middle
of the alphabet denote natural numbers, and upper-case Latin letters indicate subsets
of N.

We shall now present some basic information about #*; notice our use of (b) as a
fundamental method of proving facts about #*. By definition, #Z* contains an
infinite number o which is greater than each natural number; since each real number
is less than some natural number, we see that w is greater than each real number. More
generally, we say that a number oo is infinite if I oo, > h for every heR. By an
infinitesimal we mean any number ¢ such that, 8[ < h for every positive real number
h. We say that a ~ b (read ‘‘a approximates b’’) if a — b is an infinitesimal. Notice
that this relation allows us to abbreviate the statement ‘‘e is an infinitesimal’’ by
writing “‘e ~ 0. It is easy to prove that ~ is an equivalence relation on R*. We say
that a number is finite if it is not infinite. Finite numbers are important because of
the following fact.

FUNDAMENTAL THEOREM ABOUT FINITE NUMBERS. Each finite number is approxi-
mated by a unique real number.

To prove this, let ¢ be any finite number and consider { yl yeR and y <1t}. By
the completeness theorem for the real number system, this set has a least upper
bound a. It is easy to verify that a ~ t; moreover, since ~ is an equivalence relation,
it follows that no other real number approximates 1.

We mention that if oo is an infinite natural number then so is co + 1; moreover
o0 + 1 % oo, indeed o0 + 1 > oo . To prove statements of this sort we appeal to the
powerful proof-technique provided by our enormous postulate-set. Clearly n < n + 1
for every n € N; this is true for %, so it is true for Z* when interpreted in #£*, i.e.,
n<n+ 1 forevery ne N*. Now co e N¥* — N, s0 o0 < o0 + |. The trichotomy law
is true for Z, so it is true for #£* when interpreted in #*; thus oo # oo + 1.

Notice that each infinite natural number has a multiplicative inverse. This is due
to the fact that each nonzero real number has a multiplicative inverse. Let oo be any
infinite natural number; co # 0 so co has a multiplicative inverse, say . It is easy to
prove that ¢ is an infinitesimal. Of course 1/(cc + 1)  1/oo; i.e., the multiplicative
inverses of co and oo + 1 are distinct infinitesimals; this is due to the fact that distinct
natural numbers have distinct inverses. Clearly, if ¢ is an infinitesimal so are &2, and
&3, indeed ¢" whenever ne N, and ¢® whenever oo is an infinite natural number.
It is easy to prove that the sum of two infinitesimals is an infinitesimal; also, the
product of an infinitesimal and a finite number is an infinitesimal. The product of an
infinitesimal and an infinite number may be finite or infinite, depending upon the
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numbers involved. Just as there are infinitely many infinite numbers, so there are
infinitely many infinitesimals; indeed, the multiplicative inverse of each infinite
number is an infinitesimal.

We have already mentioned that the operation S of summing the terms of a
finite tuple, is a concept of #. Here ‘‘(«,t) € S* means that ¢ is the sum of the terms
of «. Following the usual mathematical practice, we shall express this statement by
writing ‘¢ = ST a,”” where q, is the nth term of «, a tuple with m terms (here “‘n” is
a placeholder). Of course, the placeholder that appears in the expression ‘‘STa,”
can be replaced by any other suitable symbol; we sometimes write ““STa;”’.

The corresponding concept of #*, denoted by S*, possesses all properties of S
that can be expressed within our language. Normally we shall suppress the *’s
provided it is clear from the context that we are dealing with 2*. Notice that the
concepts S and T of Z are linked in the sense that S sums the terms of each tuple in
T. Just so, S* and T* are linked, i.e., S* sums the terms of each tuple in T*.

Here are some examples. We can sum the terms of the n-tuples (1, -+, 1), (1,-+, n),
(1%,---,n?), and (13,---,n®) for each neN. Indeed S/l =n, S;i=n(n+1)/2,
S1i2=n(n+1)(2n+1)/6, and S/i® =n?(n+ 1)?/4 for each neN. Just so,
SP1=o00, SPi=00(00+1)/2, S;”i®?=00(00+1) (200 +1)/6, and ST i* = 0?
(o0 4+ 1)?/4 for each infinite natural number co. We have summed the terms of the
oco-tuples (1,-++,1), (1,+--,0), (12,--+,02), and (13, -+, 00>). We shall need these facts
in the next section.

2. Area of a region; continuity. Here we shall motivate the concept of the definite
integral that we present in Section 3. Now, the concept of the definite integral of a
function is a generalization of the concept of the area of the region bounded on one
side by the graph of the function involved, and on its remaining sides by straight
lines (see Figure 1).

/
VAN p H

Rectangle with infinitesimal base (magnified)
FiG. 1.

The basic idea is to replace the given region by a rectangular region, i.e., a region
composed of rectangles, whose area we can determine in a straightforward way.
Of course, we choose a rectangular region that approximates, in some sense, the
given region. More precisely, we subdivide the interval [¢,d] (see Figure 1) into
infinitely many subintervals each of infinitesimal length. We then erect a rectangle
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on each of these subintervals, whose height is the value of the function at some
member, or endpoint, of the interval. In this way we obtain a rectangular region that
approximates the given region; the area of this rectangular region is the sum of the
areas of the rectangles involved. Notice that we must sum infinitely many infinitesi-
mals; in our first example, we show how this is done.

Example 1. Compute the area of the region bounded by the graph of x2,
ordinates at 1 and 2, and H.

Solution. We shall consider two rectangular regions, one that contains the
given region, the other is contained within the given region. If the given region has an
area, then it is a number between the areas of these rectangular regions. First, choose
an infinite natural number, say oo. Next, divide the interval [1,2] into oo sub-
intervals each of length ¢ = 1/00, namely

[L,1+e],[1+e1+42e],,[1+ (0 —1)g,2].

Each of these closed intervals will form the base of one of our rectangles. The height
of each rectangle is obtained by evaluating the given function x> at some point of
its base. Notice that we obtain a rectangular region that contains the given region by
choosing the right-hand endpoint of each of our subintervals; whereas we form a
rectangular region contained within the given region by choosing the left-hand
endpoint of each subinterval. Let U be the area of the first rectangular region; then

U= SPe(l+ne)?=eS7 (1 + 2ne + n?e?) =¢S7 1 +2e*S7 n + &3 ST n?
g0 +2e20(00 +1)/2+&e*0(0a+1)(20 +1)/6
L+ +e)+1+e)2+e)/6=T/3+3e/2+¢%/6.

Let L be the area of the second rectangular region mentioned above. Now,
L=SYe(l1+[n—1]e?=U+e—e(l + 0e)>=U—3e=7/3 —3¢/2 + &> /6.

Our intuition suggests that the area A of the given region is a real number such that
L < A < U; there is just one real number with this property, namely 7 /3. We conclude
that 4 = 7/3. Notice here that 4 ~ L and A ~ U.

Next, we face up to the problem of defining the concept of the area of a region.
Motivated by our success in handling Example 1, where we assumed that the given
region possesses an area, we shall focus on rectangular regions. However, we shall
adopt a very severe requirement: namely, we shall insist that the area of each of our
rectangular regions (which we shall spell out in a moment) approximates the same
real number. This real number we take to be the area of the given region.

Our first job is to describe the rectangular regions involved. To be specific consider
the region bounded by the graph of a function f, ordinates at ¢ and d, where ¢ < d,
and H; we shall assume that f is nonnegative on [c,d]. Here, the closed interval
[c, d]* plays a key role; for this interval provides us with the base of each of our
rectangles. An acceptable rectangular region is constructed as follows. First, choose
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any infinite natural number, say oo, and partition [c,d]* into oo subintervals
I,,---, I each of infinitesimal length. Next, we associate with each of these intervals,
one of its members or one of its endpoints. This is achieved by actually pairing with
an interval, the number associated with it. Let ¢, be the number associated with I,
whenever 1 < k < oo ; then we form the set of ordered pairs {(Iy, t;),**s(Io,te0)}
which we call a rectangle-builder. The first terms of members of this set provide us
with the bases of our rectangles; the second terms lead us, via the given function f, to
the height of each of our rectangles. For example, the ordered pair (I, t,) yields the
rectangle with base I, and height f(1,); the area of this rectangle is f(t,)| I, |, where
]I ] denotes the length of an interval I. In this way, each rectangle-builder
{(I;5t)),++,(Inst,)} yields a rectangular region whose area is STf(t,,)II,,I.
Summarizing, the set {(I,t;),--*,(I,,t,)} is a rectangle-builder over [c,d] if
(i) {I,---,1,} is a partition of [c,d]* into co subintervals, where oo is an
infinite natural number.

(i) |I,| ~ 0 whenever 1 Sn < 0.

(iii) t,€I, or t, is an endpoint of I, whenever 1 < n < o0.

We are now ready to define the concept of the area of a region of the sort under
discussion. Let f'be nonnegative on [¢,d]. Then L is said to be the area of the region
bounded by the graph of f, ordinates at ¢ and d, and H, provided that L is a real
number and L ~ ST f(t,) ]I,,l whenever {(I,t,),-,(I,t,)} is a rectangle-builder
over [e¢,d].

So, a region of this sort possesses an area provided that the area of each
rectangular region yielded by a rectangle-builder over [¢, d] and the function involved,
approximates the same real number.

We shall prove that a region of this sort has an area if the function involved is
continuous over [¢,d]. Using our extended number system %* we can characterize
continuity in a simple and direct way. A function, say f, is continuous at a real
number a, where a € 9, provided that:

(1) f(a) ~ f(b) whenever a~b and beZ,..

A function is continuous on a set of real numbers if it is continuous at each member
of that set. So f'is continuous on a set E if

2) Sf(a) ~ f(b) whenever a ~ b, acE, be Z,..
Compare this to the definition of uniform continuity.

A function f is uniformly continuous on a real interval I provided that:
3) f(a) ~ f(b) whenever a ~ b and a,b eI*.

The point is that our simple and direct definitions of continuity and uniform
continuity allow us to establish their key properties in a meaningful and straight-
forward manner. For example, x* is continuous on R since (a + &)* = a? + 2ae
+ &2 ~ a? whenever a e R and ¢ ~ 0. If fand g are continuous at a, and if ¢ ~ 0, then
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[f91(a + &) =f(a +e)g(a + &) = f(a)g(a) = [fg](a)

since f(a + &) ~ f(a) and g(a + ¢) ~ g(a) by assumption; so fg is continuous at a.
We can easily prove that f is uniformly continuous on a closed interval I if f is
continuous on I. Let a ~ b and a, b € I*; by the Fundamental Theorem about Finite
Numbers, there is a real number ¢ such that ¢ ~ a and ¢ ~ b, moreover c 1. But f is
continuous on I, so f(¢) ~ f(a) and f(c) ~ f(b); thus f(a) ~ f(b). This proves that f
is uniformly continuous on I.

Later, we shall need the following fact about continuous functions. Each function
that is continuous on a closed interval has a maximum value and a minimum value
on that interval; i.e., if is continuous on a closed interval I, there are members of I,
say s and ¢, such that f(s) = f(a) whenever ael, and f(t) £ f(a) whenever ael.
To prove this, let {(I;,1,),---,(I,,t,)} be a rectangle-builder over I, and consider
the oo-tuple (f(t),-:-,f(t,)). This tuple has a largest term, say its nth term f(t,)
(here ne N*). This is due to the fact that each finite tuple of real numbers has a
largest term (remember, we can handle infinite tuples just like finite tuples). Now,
there is a real number s that approximates ¢,. We claim that f(s) = f(a) whenever
a el. Clearly, given a there is a member of N*, say m, such that a e1,,; thus f(a)
=~ f(t,,) since f'is continuous on I. But f(t,,) < f(t,) ~ f(s); it follows that f(a) < f(s)
since both these numbers are real. This proves that f has a maximum value on I.
Applying this result to — f, we see that / has a minimum value on I, provided f is
continuous on .

3. The definite integral. The problem we face is to decide of a region, of the type
considered in Section 2, whether it has an area. To allow us to see the essentials of
the situation clearly, we introduce the concept of the definite integral, which centers
on the function that provides one boundary of the region. This way, the complications
of geometry are eliminated at a single stroke, and we are free to concentrate on
what really counts.

Let f be any function whose domain contains the closed interval [ ¢, d]. We say that
f is integrable over [c¢,d] if there is a real number L such that L ~ S‘ff(t,,)l L|
whenever {(I,t;), (I, 1)} is a rectangle-builder over [¢, d]. The number L, if it
exists, is denoted by fff We do not insist that /* be nonnegative on [c,d].

Clearly, the region bounded above by the graph of £, below by H, and by ordinates
at ¢ and d, has an area if and only if /is integrable over [¢,d]. So questions about
area are reduced to questions about the integrability of a function.

To illustrate our definition of the definite integral of a function, let us show that
the constant function 5 is integrable over [0,1]. Choose any rectangle-builder
{(Ila tl)’ o ',(Ioo’ too)}; now

SYS|L,| =587, =5

since S‘}°|I,,] is the length of the interval [0,1]. We conclude that the constant
function 5 is integrable over [0,1] and that [§5 =5.
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On the other hand, g is not integrable over [0, 1] where g is the function such that

0 if ¢ is rational
so=f
1 if ¢ is irrational.
Choose a rectangle-builder {(I,?,),-*,(I,t,,)} Where each ¢, is rational; here
e g(t,,)] I, ] = 0. Next, choose a rectangle-builder {(I,s,),-*,(I ,5.,)} Where each s,
is irrational; here Sg(s,)|1,| = ST |1,| = 1. So g is not integrable over [0, 1].

This example raises the following question. Are we sure that each subinterval of
the rectangle-builders involved has a rational member, in the first case, or an ir-
rational member in the second case? Since the interval with endpoints ¢ and 2,
where ¢ ~ 0, has no real members, we must somehow classify nonreal numbers
rational or irrational. This is easy; moreover we can prove that each interval in
fact possesses both rational and irrational members that are nonreal. We need an
appropriate fact about #. Here it is: ‘‘Between any two real numbers there is a
rational number and an irrational number”’. Notice that we are involved with the
concept of a rational number, and the concept of an irrational number—concepts
of Z. By construction, #£* involves corresponding concepts that we label by the
same name; so each member of R* is rational or irrational (since this is true for %),
and between any two numbers there is a rational number and an irrational number
(this is a statement about #£*). We conclude that each subinterval of a rectangle-
builder contains both rational numbers and irrational numbers. One more question.
Can we be sure that g(t,) = 0 whenever ¢, is a rational nonreal number? Again, we
observe that the corresponding statement is true for %, so it is true for Z* when
interpreted in Z#*.

Our main goal is to prove that each continuous function is integrable. First, we
must prove that S¥ ¢,a, ~ 0 if oo is an infinite natural number, each ¢, ~ 0, and if
S‘}°| a,,] is finite. Let h be any positive real number, and let k be a real number such
that S7|a,| <k. Clearly,

S¥e,a,| = ST e,| |a,] < ST h a, =—h~S‘{°, a,| <h
k k

which proves that S{¢,a, is an infinitesimal.

Throughout the remainder of this discussion, f'is a function that is continuous on
[c, d]. We shall prove that fis integrable over [c, d]. First, we show that each of our
infinite sums Sff(t,,)ll,,] is approximated by some real number. Next, we prove
that varying the #’s does not affect this real number. Finally, we prove that varying
the partition involved also does not affect the real number that approximates our
infinite sum.

For the first point, recall that / has both a maximum value M and a minimum
value m on [c¢,d]; i.e.,, m =< f(t) < M whenever ¢ £t < d. Thus

mS?|1L,] < Sf(1)|1,| < MST|L,|
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so m(d—c¢) < STf(t,,)II,,] < M(d — ¢) whenever {(I,t,),-*+,(I,t,)} is a rectangle-
builder over [c,d]. Both m(d —c) and M(d —c) are real numbers, so
STf (t,,)] I,,] is finite. Therefore, by the Fundamental Theorem about Finite Numbers,
STf(,) | I,,I is approximated by a real number.

Next, let {(I;,ty), ", (In,t)} and {(Iy,8,),,(I,5,)} be rectangle-builders
over [c,d] that involve the same partition of [¢, d]. By assumption s, ~ ¢, for each n,
moreover f is uniformly continuous on [c,d]; so f(s,) = f(t,) for each n. Thus,
corresponding to each n, there is an infinitesimal ¢, such that f(s,) =f(1,) + ¢,. So

S?of(sn)lllx, = S;o(f(tn) + 8,,)!],,' = S(I)Of(tn)l Inl + Sloognlln, ™~ Siof(tn),ln,

since S7 |1,|=d—c which is finite. Thus ST /(s,)| I,| =~ S{f(1,)| L.

This result is useful because it allows us to concentrate on the partition of [c,d]
involved, ignoring the members of each subinterval at which we evaluate 1. Now, we
can represent a partition of [c,d], say {I,---,1,}, by listing in increasing order the
endpoints of the subintervals I,,---,I . For example, let a, and a; be the endpoints
of I, let a, and a, be the endpoints of I,,--, let a,,_, and a,, be the endpoints of
I,; then the infinite tuple (a,,---,a,) characterizes the partition {I,,---,I}. This
provides us with a convenient and useful way of referring to a partition of [¢, d].
Now, each partition (ag,--,a,,) leads us to a real number, the real number that
approximates each of the infinite sums associated with a rectangle-builder involving
this partition. We must show that the real numbers associated in this way with
different partitions, say (aq, '+, d,) and (by, -, b,,), are the same. The idea is to
intermesh the terms of the given partitions according to size, deleting duplicates;
this yields (co,**,¢,,), a refinement of the given partitions. Here cq = ao = by,
¢y =min{ay, b}, and so on. Our process of intermeshing the terms of two tuples
works as follows: from the tuples (2,7,9,10,15) and (2,4,5,8,9,12,13) we obtain
(2,4,5,7,8,9,10,12,13,15).

Each infinite sum formed from a rectangle-builder involving the partition
(o5 *+5Cy,) lies between two sums formed from rectangle-builders involving the
partition (a,, -+, a,,), one obtained by choosing t’s so as to maximize the value of f
over each subinterval, the other by choosing t’s so as to minimize the value of f over
each subinterval. We have already seen that these sums differ by an infinitesimal; so
any sum formed from a rectangle-builder involving (¢, -, ¢,,) approximates each
sum based on the partition (ag,--,4,). By the same argument, each sum formed
from a rectangle-builder involving (co,**,¢,,) approximates each sum based on the
partition (b, -+, b, ). Since =~ is transitive, it follows that each sum based on the
partition (aq,-:-,a,) approximates each sum based on the partition (by, -+, b,).
So the same real number is associated with both partitions.

We have proved the following statement.

THEOREM. Let f be continuous on [c,d]. There is a real number L such that
L'zST’f(t,,)[I,,l whenever {(I1,t,),"*,(I,t,)} is a rectangle-builder over [c,d].

In other words, f is integrable over [¢,d] if f is continuous on [¢, d].
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Well, we have demonstrated that a region of the sort described in Section 2 has
an area if the function involved is continuous. Moreover, we have shown that if fis
continuous on [¢,d], we can compute fﬂ f by merely computing Sf°f(t,,)| I,,l for a
single rectangle-builder. Of course, [¢f is the real number that approximates
STf(t)| L.

To illustrate this last point we shall compute [1x2. Let oo be an infinite natural
number, let ¢=1/c, and let {I,,---,I,} be the partition of [1,2] such that
I, =[1,1+¢), I, =[1+¢1+2¢),,I, = [1+(0—1)2]; so {(I,1+5¢),-,
(I, 1 + 0g)} is a rectangle-builder over [1,2]. Then [x?~ S s(1 + ne)* ~7/3
(see Example 1), so [$x? =7/3.

Of course, it is important to establish the Fundamental Theorem of Calculus,
which provides a simple method of evaluating f;’ /, i.e., computing the real number
that approximates S{°f(t,) , I,,l. This involves integral functions, the derivative of a
function, indeed the concept of an antiderivative, the fact that the derivative of an
integral function is its integrand, and the mean value theorem. The point is that f
has an antiderivative if fis continuous on the interval involved, i.e., there is a function
g such that g’ =f'; so

SYf)| L] = f(t)(a; —ao) +f(t) (a5 — ay) + - + f(t,) (a0, — @y—y)
[g(al) - g(ao)] + [g(az) - g(a1)] + ot [g(aoo) - g(aoo—l)]
g(ay) — g(ao)

provided the #’s have been chosen with the mean value theorem in mind, i.e., g(a,)
- g(an—l) = gl(tn)(an - an—l)’ n = 1, e, Q0. Thus

d
f F=g(d) - g(c)

where g is an antiderivative of f, provided f'is continuous on [c,d].

Finally, we want to ensure that there is a rectangle-builder over a closed interval,
say [0,1]. Here we need the concept of a finite partition of [0, 1] consisting of
subintervals. Let P be the set that exemplifies this notion. Now, for each natural
number n there is a member of P consisting of n subintervals each of length 1 /n.
Since this is true for £, it is true for Z* when interpreted in #Z*. So, for each member
of N*, say n, there is a member of P* consisting of n subintervals each of length 1 /n.
In particular, let co be an infinite natural number; so, there is a member of P
consisting of co subintervals each of length 1/00. Since we can associate with an
interval one of its endpoints, we obtain a rectangle-builder over [0, 1].
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THE MINIMUM PATH AND THE MINIMUM MOTION
OF A MOVED LINE SEGMENT

MICHAEL GOLDBERG, Washington, D. C.

1. The problems. In Problems in Modern Mathematics by S. M. Ulam (Interscience
Publ.) 1964, page 79, the following problem in the calculus of variations is posed:

Suppose two segments are given in the plane, each of length one. One is asked to
move the first segment continuously, without changing its length, to make it coincide
at the end of the motion with the second given interval in such a way that the sum
of the lengths of the two paths described by the end points should be a minimum.
What is the general rule for this minimum motion?

In the problem as stated, it is not clear whether retracing of parts of the path are
permitted. Therefore, it breaks down into two different problems, namely, one in
which the path is minimized, and another in which the motion is minimized.

2. The possible solutions. Consider the motion of the unit line segment from
the position AB to the position A’B’ in which the distance A4’ is shorter than
BB’, or equal to BB’. In Figure 1, the shortest path and the shortest motion consists
simply of the straight line segments A4’ and BB’.

AI

B B’
Fic. 1. No pivot point.

In Figure 2, the line segment AB is moved by parallel displacement to A'D.
Then, the segment is moved from A’D to A’B’ by rotation about 4’. A shorter path
is obtained by drawing a tangent line from B to the arc DB’ and touching DB’ at C.
Then, retaining the line 44’ as the path of 4, the path BCB'is shorter than BDB’.
There are, however, still shorter paths than the one shown in Figure 2.

A A’

Fi1G. 2. One pivot point on path.
31
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Consider the different motions shown in Figures 3 and 4. In Figure 3, the path
length (track or road) is the same as the motion, and it is equal to APA’ plus BCC'B’.
In Figure 4, however, although the total length of the path is the same as in Figure 3,

Fic. 3 Path length is the same as the motion.

the motion is greater since the motion of the 4 end of the moving line segment
AB is from A to D', back to D, and then to A’. The arc DD’ is traced three times.
Hence, the total motion in Figure 4 is greater than the motion in Figure 3.

DD A

B
Fic. 4. Same path length as Fig. 3, but longer motion since part of path is retraced.

3. The restricted problem. If retracing of a point or an arc is not permitted, then
a loop in the path is also not permitted. With this restriction, the length of the path
is equal to the length of the motion. There may be one or more pivot points at which
one end of the moving line is stationary, while the other end traces the arc of a circle.
Then, the minimum motion is also the minimum path, and it may be obtained by
the use of a mechanical analogy and elementary statics, without the use of the calculus
of variations.

4. The restricted problem with no crossed paths. Consider the case, shown in
Figure 3, in which the straight line 44" does not cross the line BB’. Let P be a pivot
point where the A4 end is stationary, while the B end traces the arc CC'. Consider
a taut string through APA'B’'C’, along the arc C’C, and then through B and back to A.
Subject to the restraints, the tension in the string will force the total length to be
minimized. If the rigid body which includes the sector PCC’, of unit radius, is in
equilibrium with the string under uniform tension, then the resultant of the equal
tensions at P is along the bisector of the angle at P, and it must be equal and opposite
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to the resultant of the tensions at C and C'. The points P, C, and C’ are determined
by the following construction. With B and B’ as centers, draw arcs of unit radius.
From A and A’, draw tangents to these arcs. Their intersection is P. With P as a
center, and with unit radius, draw an arc. Draw tangents BC and B’C’ to this arc,
Then, AP and C'B’ are-parallel, separated by unit distance. Similarly, P4’ and BC
are parallel, separated by unit distance. The extended lines AP, PA’, BC, C’'B’ make
a rhombus. The sum of the equal tensions along AP and PA’ is a resultant along
the bisector of angle 4PA’ (a diagonal of the rhombus), and it is equal and opposite
to the resultant of the equal tensions along BC and C'B’.

B
F1c. 5. Two pivot points, unstable.

If two pivot points P, and P, are used as shown in Figure 5, then the tensions
in the string will force the two turning sectors together until they coincide to form
Figure 3. In general, if any finite number of pivot points are used, the resultant of
the tensions will force the sectors together until they coincide. From these cases,
we can conclude that the method of Figure 3 gives the shortest possible motion for
the restricted problem with no crossed paths, whenever the solution of Figure 1
cannot be used because of the given initial conditions.

BI

AI

B

FiG. 6. Crossed joins, two pivot points.

5. The restricted problem with crossed paths. Consider the case, shown in Figure 6,
in which the segment 44’ crosses the segment BB’. Pivot points must be used near
the terminal positions of the moving line unless one of the angles at the terminal
line is a right angle or greater. In Figure 7, a pivot point is not needed at A'B’ since
the angle at B’ is obtuse. If the pivot centers had been taken at positions other than
the terminal points, the tensions in the string would force the turning sectors to the
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terminal positions. The first selection of a turning arc must be at the largest acute
angle in order to minimize the arc, and hence, to minimize the path.

A

Bl

B A’
FiG. 7. Crossed joins, one pivot point.

6. The restricted problem with crossed joins and close terminal positions. In each
of the foregoing cases, the motion is composed of a combination of rotations and
translations. Figure 8, however, shows a case in which 44’ crosses BB’, and the
positions 4B and A’B’ are so close that tangents cannot be drawn to the turning
arcs as in Figures 6 and 7. Then, it is necessary to use pure rotation of the line AB
about a center P which is at the intersection of the perpendicular bisectors of 44’
and BB’

FiG. 8. Crossed joins, pure rotation.

A PRINCIPAL IDEAL RING THAT IS NOT A EUCLIDEAN RING
JACK C. WILSON, University of North Carolina at Asheville.

1. Introduction. In introductory algebra texts it is commonly proved that every
Euclidean ring is a principal ideal ring. It is also usually stated that the converse is
false, and the student is often referred to a paper by T. Motzkin [1]. Unfortunately,
this reference does not contain all of the details of the counterexample, and it is
not easy to find the remaining details from the references given in Motzkin’s paper.
The object of this article is to present the counterexample in complete detail and
in a form that is accessible to students in an undergraduate algebra class.

Not all authors use precisely the same definitions for these two types of rings.
Throughout this paper the following definitions will hold.
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DEFINITION 1. An integral domain R is said to be a Euclidean ring if for every
x 5% 0 in R there is defined a nonnegative integer d(x) such that:

(i) For all x and y in R, both nonzero, d(x) < d(xy).

(ii) For any x and y in R, both nonzero, there exist z and w in R such that
x = zy + w where either w = 0 or d(w) < d(y).

DEFINITION 2. An integral domain R with unit element is a principal ideal
ring if every ideal in R is a principal ideal; i.e., if every ideal A is of the form
A = (x) for some x in R.

The ring, R, to be considered is a subset of the complex numbers with the usual
operations of addition and multiplication:

R={a+b(l+,/=19)/2| a and b are integers}.

It is elementary to show that R is an integral domain with unit element. The purpose
of this article then is to show that R is a principal ideal ring, but that it is impossible
to define a Euclidean norm on R so that with respect to that norm R is a Euclidean
ring.

2. Thering is a principal ideal ring. In R there is the usual norm, N(a + bi) = a® +
b%, which has the property that N(xy) = N(x) N(y) for all complex numbers
x and y. In R this norm is always a nonnegative integer. The essential theorem for
this part of the example is due to Dedekind and Hasse, and the proof is taken
from [2, p. 100].

THEOREM 1. If for all pairs of nonzero elements x and y in R with N(x) = N(y),
either y‘ X or there exist z and w in R with 0 < N(xz — yw) < N(y), then R is a
principal ideal ring.

Proof. Let A # (0) be an ideal in R. Let y be an element of 4 with minimal
nonzero norm, and let x be any other element of A. For all z and win R, xz — yw
is in A so that either xz — yw = 0 or N(xz — yw) = N(y). Hence the assumed
conditions on R require that y] x; ie, A =(y).

The ring R under consideration will now be shown to satisfy the hypo-
theses of Theorem 1. Observe that 0 < N(xz — yw) < N(y) if and only if
0 < N[(x/y)z—w] < 1. Given x and y in R, both nonzero and y/kx, write x/y
in the form (a + b\/_——1§)/c where a,b,c are integers, (a,b,c) =1, and ¢ > 1.
First of all, assume that ¢ > 5. Choose integers d,e,f,q,r such that ae + bd +
of=1,ad — 19 be = cq +r,and | r| < ¢/2. Set z=d + e;/—19 and w=q—f./—19.
Thus,

(x/0z—w = (a+b=19)(d+e,/=19)c —(q —f/—19)

= rlc+ \/’:1"9‘/(:.

This complex number is not zero and has norm (r* + 19)/c*, which is less than 1
since | r] < ¢/2 and ¢ = 5. The only case that is not immediately obviousis ¢ = 5,
but then |r| < 2 so that 2 + 19 < 23 < 2.
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The remaining possibilities are ¢ = 2, 3, or 4. Consider these in order:

() Ifc=2, ykx and (a,b,c) = 1 imply that a and b are of opposite parity.
Set z=1 and w=[(a—1)+ b\/?ﬁ]/2 which are elements of R. Thus,
(x/y)z —w = 1/2 # 0 and has norm less than 1.

(ii) If ¢ = 3, (a,b,c) = 1 implies that a? + 19b% = a*> + b> # 0 (mod 3). Let
z = a—b\/—:ﬁ and w = g where a® + 19b? = 3g + r with r = 1 or 2. Thus,
(x/y)z —w = r/3 # 0 and has norm less than 1.

(111) If ¢c =4, a and b are not both even. If they are of opposite pa-
rity, a®> +19b®> = a> —b?> # 0 (mod 4). Letz = a —b\/ 19 and w = ¢, where
a? 4+ 19b* = 4q + r with 0 <r <4. Thus, (x/y)z —w = r/4 # 0 and has norm
less than 1. If a and b are both odd, a? + 19b% = a® + 3b*> # 0 (mod 8). Let
z = (a — by/—19)/2 and w = q, where a® + 19b? = 8q + r with 0 < r < 8. Thus,
(x/y)z —w = r/8 # 0 and has norm less than 1.

This completes the proof that R is a principal ideal ring.

3. The ring is not a Euclidean ring. This part of the counterexample is taken from
[1]. The material is repeated and slightly elaborated here in order to give a self-
contained result accessible to an undergraduate class. As with the previous section
the results are stated within the context of the ring R under consideration, but the
theorem applies to more general integral domains. Throughout this section R,
will denote the set of nonzero elements of R.

DEFINITION 3. A subset P of Ry with the property PRy P; i.e., Xy is an element
of P for all x in P and y in Ry, is called a product ideal of R. (Notice that R,
is a product ideal.)

DEFINITION 4. If'S is a subset of R, the derived set of S, denoted by S’, is defined
by S’ = {xeSI y+xRcS, for some y in R}.

LemMma 1. If S is a product ideal, then S’ is a product ideal.

Proof. If x isin S’, then x is in S and there exists y in R such that y + xR = S.
Let z be in R,. Since S is a product ideal and x is in S, xz is in S. Further,
y+(xz)R< y + xR = S. This shows that S'R, = §’; i.e.,, S’ is a product ideal.

LemmA 2. If S< T, then S' < T'.

Proof. If x is in S’, then x is in S and hence in T, and there exists a y in R such
that y + xR = S = T. Therefore, x isin T', and S’ = T".

THEOREM 2. If R is a Euclidean ring, then there exists a sequence, {P,}, of
product ideals with the following properties:

(i) Ry=Py>P oP,o->P, >,

(i) nP, =,

(iii) . P, = P,,, for each n, and

(iv) For each n, RP, the nth derived set of Ry, is a subset of P,,.

Proof. Let the Euclidean norm in R be symbolized by d(x) for x in R,. For each
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nonnegative integer n, define P, = {x eROI d(x) = n}. This defines the sequence
which obviously has properties (i) and (ii). Suppose that x is in P, and yis in R,.
d(xy) = d(x) = n which implies that xy is in P,. This shows that P,R, < P,; i.e.,
for each n, P, is a product ideal.

For property (iii) let x be in P,; i.e., x is in P, and there exists a y in R such that
y + xR <= P,. Applying the Euclidean algorithm, there exist elements ¢ and r in R
with y=xq+r and r=0 or d(r)<d(x). Hence, r=y+x(—¢q) is in
y + xR < P,, which implies that d(r) = n, and in turn, d(x) > d(r) = n, so that
dx)=n+1 and x is in P,,,. This proves property (iii) P,<P,.;.

For property (iv), clearly R, = P, and application of (ii) gives R, = P, = P, .
Assuming that R < P,, Lemma 2 and (iii) yield Ry'*" < P, < P,,,. By induc-
tion, (iv) is proved.

COROLLARY. If R, = R} # (&, then R is not a Euclidean ring.

Proof. The hypotheses of the corollary imply that for all n, R = R,. If
R is a Euclidean ring, the theorem would require R = N R < NP, = .

This corollary is now used to show that R is not a Euclidean ring. First
Ry is determined. If x is a unit in R, say xy = 1, and z is an element of R,
z + x(—yz) = Ois not in R, . This shows that units are not in Rg. If x is not a unit
in R, then using z = —1, z + xy # 0 for all y in R, which shows that if x is not
zero and not a unit, x is in Ry . Altogether, Ry, is precisely the set of elements of R
that are neither units nor zero. Notice that the only units of our example R are 1
and —1. Next, in order to determine the elements of Ry, itis convenient to use the
following terminology:

DEFINITION 5. An element x of Ry is said to be a side divisor of y in R provided
there is a z in R that is not in Ry such that xl (y +2). An element x'of R, is a
universal side divisor provided that it is a side divisor of every element of R.

If x is in Ry, then x is in R and there is a y in R such that y + xR < Ry;
i.e., x never divides y + z if z is zero or a unit. Thus, x is not a side divisor of y,
and therefore, not a universal side divisor. Conversely, if x is not in R{, and is in
Ry, then for every y in R there exists a w in R with y + xw not in Ry; i.e.,
y + xw is zero or a unit, and therefore, x is a side divisor of y. Since this holds for
every y in R, x is a universal side divisor. Together, these two arguments show
that Rj is the set R exclusive of the universal side divisors. If it can now be
shown that R has no universal side divisors, this will show that Ry = Ry # &,
and the corollary will complete the proof that R is not a Euclidean ring.

A side divisor of 2 in R must be a nonunit divisor of 2 or 3. In R, 2 and 3 are
irreducible, and therefore, the only side divisors of 2 are 2, —2, 3, and —3. On
the other hand, a side divisor of (1 + \/:E)/2 must be a nonunit divisor of
(1+=19)/2, (3+/—19)/2, or (—1 +,/=19)/2. These elements of R have
norms of 5, 7, and 5, respectively, while the norms of 2 and 3 and their associates
are 4 and 9, respectively. As a result, no side divisor of 2 is also a side divisor of
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1+ \/tﬁ)/Z, and there are no universal side divisors in R. All of the details of
the counterexample are complete.
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1. T. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc., 55 (1949) 1142-1146.
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THE U.S.A. MATHEMATICAL OLYMPIAD

Sponsored by the Mathematical Association of America, the first U.S.A. Mathe-
matical Olympiad was held on May 9, 1972. One hundred students participated.
The eight top ranking students were: James Saxe, Albany, N.Y.; Thomas Hemphill,
Sepulveda, Calif.; David Vanderbilt, Garden City, N.Y.; Paul Harrington, Central
Square, N.Y.; Arthur Rubin, West Lafayette, Ind.; David Anick, New Shrewsbury,
N.J.; Steven Raher, Sioux City, Iowa; James Shearer, Livermore, Calif. A detailed
report on the Olympiad including the problems and solutions will appear in the
March 1973 issue of the American Mathematical Monthly.

The second U.S.A. Mathematical Olympiad will be administered on Tuesday,
May 1, 1973. Participation is by invitation only. For further particulars, please
contact the Chairman of the U.S.A. Mathematical Olympiad Committee, Dr.
Samuel L. Greitzer, Mathematics Department, Room 212, Smith Hall, Rutgers
University, Newark, N.J. 07102.

GLOSSARY

KATHARINE O’BRIEN, Portland, Maine

Campus disorder Nylon tires
Skew quadrilateral-quadrangle —- Synthetic substitution —
extreme polarization translation by rotation
demonstration. transportation,
Generation gap Popcorn
Two-parameter family — Iterated kernels —
negative orientation onto magnification
to communication. transformation.
Heart transplant Suburb
Removable discontinuity — Deleted neighborhood -
binary correlation little inclination

operation. to integration.
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ANOTHER PROOF OF A THEOREM OF NIVEN
KENNETH S. WILLIAMS, Carleton University, Ottawa

Niven [3] has proved that the gaussian integer a + 2bi (a, b integers) is the sum
of two squares of gaussian integers if and only if (1 + i)? H'a + 2bi. (If w(5£0)
and z are gaussian integers such that w*|z, w**! t z for some integer k = 1 we
write w* ” z.) Simple proofs of this result have been given recently by Leahey [1]
and Mordell [2]. Here is another simple proof.

We begin by showing that if (1 + i)3 ,H a + 2bi then a + 2bi is the sum of two
squares of gaussian integers. If a is odd, so that 1 +i ¥ a + 2bi, we have

a+2bi = ((—ai—l—)-i- bi)2 + (b _(a_—_gi){
2 2
If a is even we have (1 + i)2|a +2bi. Tf(1 + i)? || a+2bi, say a + 2bi =(1 + i)*(c +di),
where ¢ + d odd, then

a+2bi = {(C_—__;’ji) + i(ﬁ_lei_l_) }2 + {(Cj_dz:i)

. 2
+i (—C—%"ii)} .

If (1 +i)“] a +2bi, say a+2bi = (1 + i)*(e + fi), then we have
a+2bi =((e—1)+fi)?+(f—(e+ 1)i)2.

Finally suppose (1 + i)* || a + 2bi, say a +2bi = (1 + i)*(g + hi), where g + h
is odd. We show that a + 2bi is not the sum of two squares of gaussian integers, for
if a 4+ 2bi = (a, + b;i)® + (a, + b,i)? then

(1 +0)*(g + hi) = {(a; + by) — (a; — by)i}{(a; — by) +(ay + b)i},
and so on multiplying both sides by their complex conjugates we obtain
2%(g2 + h?) = {(ay + by)?> +(ay — by)?*} {(ay — by)* + (a, + by)?},

which a simple parity argument shows to be impossible as the left hand side is
= 8 (mod 16) yet the right hand side is =0, 1, 4, 5, 9, 13 (mod 16). This completes
the proof.

References

1. W. J. Leahey, A note on a theorem of I. Niven, Proc. Amer. Math. Soc., 16 (1965) 1130-1131.

2. L. J. Mordell, The representation of a gaussian integer as a sum of two squares, this MAGAZINE,
40 (1967) 209.

3. I. Niven, Integers of quadratic fields as sums of squares, Trans. Amer. Math. Soc., 48 (1940)
405-417.

39


http://www.jstor.org/page/info/about/policies/terms.jsp

CLASS NOTES ON SERIES RELATED TO THE HARMONIC SERIES
MILTIADES S. DEMOS, Villanova University

We know that ¥ (1 /k) diverges and X ((— 1)~ /k) =In 2. We consider some
rearrangements of the alternating series. All limits are as n — co.

LEMMA. If a >b > 0 are integers, lim 25", , (1/k) =In(a/b).

Proof. -~ 4t ottt 41
mb+1  nb+2 na_an_}_i b+2 a}'
n n

By the definition of an integral im X7, | (1/k) = [; (dx/x) = In (a/b). In particular

lim 23° (1/k) = 1n a.
Suppose in the series for 1n2, we take a positive terms followed by b negative

terms and alternate this way.

THEOREM 1. Let
Sy=(L+tpy Ly (Aot d
L W 3 2a — 1 2 4 2b

i)+
+((n—1l)a+1+(n—11)a+3+"' na—l) (2(n—1)b+2 - 2nb)'

Then limS,=1n 2 + £ In (a /b).

1 I L
+(2a+7+"'+4a—1) (2b+2

Proof (when a > b).

‘" Z .
1 k nb+1 2k
Since the last sum equals 4 2.7, (I /k) the theorem follows. A similar proof can be
given for a < b.

THEOREM 2. In the harmonic series replace the kath term by — (a — 1)/(ka).
Then the series converges to ln a.

Proof. Set
S—i+i+...+ ! _a—1_|_ ! +..+__..1_____a____._1.
" 2 a—1 a a+1 2a — 1 2a
O S SR
(n—-1a+1 na — 1 na
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Then
na 1 n 1 n a — 1 na 1 n l na
syl gt _ga-t_§g1 g1 _§1
7 HR i 7R SR Sl i L

It is easily seen that the sequence of partial sums of the series has the same limit as S,.

We know X7, (1/kP) converges if and only if p > 1. Suppose that we sum the
series for all k that can be written without using the numeral 9. Suppose, for example,
that the key for 9 on the typewriter is broken and we type all the natural numbers we
can. Call the summation X',

THEOREM 3. X’ (1/kP) converges if and only if p > log,,9 = .954 +.

Proof. There are (9-1) terms with T(;”— < Tlp— < Tlf
92 — 9 terms with-lT)J(’)—p—— < k—lp— < T(l)—"—
9" — 9"~ 1 terms with TO—}’T < ki” < —~———10(n_11)p .
Then
—lg—,,~+—1%%—+—18('793—j,—+-~ <X %,— <—]§,,— +110'3— +%02;p—+

The ratio of both geometric series is (9 /107). Then the series converges if and only if
(9/107) < 1, that is, p > log,y9.

We would obtain the same result if instead of 9, any other numeral were missing,.
If two numerals are missing, we can show that the series converges if and only if
p > log, 8. In general, if we use exactly m numerals (1 £ m £ 10), the series con-
verges if and only if p > log,,m, with the proviso that when we use only one numeral

that numeral is not zero.

PROBLEMS AND SOLUTIONS

Eprtep BY RoBerRT E. HorTON, Los Angeles Valley College
AssocIATE EDITOR, J. S. FRAME, Michigan State University

Readers of this department are invited to submit for solution problems believed to be new
that may arise in study, in research, or in extra-academic situations. Problems may be submit-
ted from any branch of mathematics and ranging in subject content from that accessible to the
talented high school student to problems challenging to the professional mathematician. Propo-
sals should be accompanied by solutions, when available, and by any information that will
assist the editor. Ordinarily, problems in well-known textbooks should not be submitted.

The asterisk (*) will be placed by the problem number to indicate that the proposer did not
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supply a solution. Readers’ solutions are solicited for all problems proposed. Proposers’ solutions
may not be “best possible” and solutions by others will be given preference.

Solutions should be submitted on separate, signed sheets. Figures should be drawn in India
ink and exactly the size desired for reproduction.

Send all communications for this department to Robert E. Horton, Los Angeles Valley
College, 5800 Fulton Avenue, Van Nuys, California 91401,

To be considered for publication, solutions should be mailed before July 1, 1973,

PROPOSALS

852. Proposed by Richard A. Gibbs, Fort Lewis College, Colorado.

If a 2k x 2k checkerboard is given with two diagonal corners removed, it is well
known that it cannot be covered by 2 x 1 dominoes because the removed corners
are of the same color and a domino must cover one square of each color. (a) Is it
possible to cover a 2k x 2k checkerboard which has had one square of each color
removed? (b) What about a (2k + 1) x (2k + 1) checkerboard which has had one
square of the corner color removed?

853. Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn,
Michigan.

It is a well-known theorem that all quadric surfaces which pass through seven
given points will also pass through an eighth fixed point. (a) If the seven given points
are (0,0,0), (0,0,1), (0,1,0), (2,0,0), (1,1,0), (1,0,1) and (1,1,1), determine the
eighth fixed point. (b) Determine the eighth fixed point explicitly as a function of
the seven general given points (x;, v z;,), i = 1,2,3...7.

854. Proposed by John D. Baum, Oberlin College, Ohio.

Let N = x* 4+ 44* where x and a are integers, then N is composite unless
x=a= +1.

855. Proposed by Romae J. Cormier, Northern Illinois University, De Kalb,
Illinois.

Let T and T’ be two Pythagorean triangles. If 6 and 6’ are any acute angles of
these triangles respectively such that 6 # 6, then show that the right triangle T”
which has an acute angle 6 + 6’ or n — 0 — 0’ is Pythagorean.

*856. Proposed by Leonard Gallagher, University of Colorado.

For what values of x and y is the following logarithmic inequality valid:

2 2
log®xlog*y < log? xy )
log2x + log?y x+y

857. Proposed by Marlow Sholander, Case Western Reserve University.

Find a function y = f(x) such that:
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O fO@=27/2=174=2
(i) f(x) is differentiable on 0 < x < 4,
(iii) There is an area-length equality

fydx=f J1+ ()2 dx.
4] 0

858. Proposed by David Singmaster, Polytechnic of the South Bank, London,
England.

In the November 1970 issue, Eric Langford has obtained the probability that
three points chosen at random in a 1 x L rectangle form an obtuse triangle. Con-

sider two points chosen at random in the unit interval. It is not difficult to see that

the probability of the three segments forming a triangle is 4. What is the pro-

bility that the resulting triangle is obtuse?

QUICKIES

From time to time this department will publish problems which may be solved by laborious
methods, but which with the proper insight may be disposed of with dispatch. Readers are urged
to submit their favorite problems of this type, together with the elegant solution and the source,
if known.

Q557. Prove that x*+2y*+3z*—4w* = 7 has no solution in integers.

[Submitted by Erwin Just]

Q558. It is known that if a ray of light is reflected off three successive faces of a
trirectangular corner mirror, the final direction of the ray is parallel but opposite to
that of the incoming ray. Show that the same property holds more generally for n
successive reflections off the n faces of an n-rectangular corner mirror in E".

[Submitted by Murray S. Klamkin]

Q559. If a,,; = Sa,+/24a2 —1, n=0.1.2... and a, =0, show that the
sequence {a,} is always integral.

[Submitted by Murray S. Klamkin]

Q560. In the set R* of positive real numbers, consider the usual binary operations
+ and . Is (R*, -, +) a ring?

| Submitted by Jiirg Rditz, Switzerland]

Q561. The arithmetic mean of the twin primes 3 and 5 is the square integer 4.
Are there other twin primes with a square arithmetic mean?

[Submitted by Charles W. Trigg]

(Answers on page 54)
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SOLUTIONS
Late Solutions

James H. Boersma, Granville, Michigan: 817; Derrill J. Bordelon, Naval Underwater Systems
Center, Rhode Island: 818, 819; Helen Engebretson, Brookings, South Dakota: 821; M. G. Greening,
University of New South Wales, Australia: 817, 819, 821, 822, 823; Bryan V. Hearsey, Lebanon
Valley College, Pennsylvania: 817; Dean Hickerson, Davis, California: 823; Thomas J. Hofman,
Wanewac, Wisconsin: 817; Shiv Kumar and Miss Nirmal (jointly), Ohio University: 817, 818; M. S.
Krishnamoorthy, Kanpur, India: 817; Larry Masselink, Fremont Christian Schools, Michigan: 820,
Edwin P. McCravy, Midlands Technical Education Center, South Carolina: 817, Gordon Miller,
Wisconsin State University, Stevens Point: 817,821 Rev. Bernard J. Portz, Creighton University,
Nebraska: 817; Fred Pooley, Parkston, South Dakota: 817; Jack S. Selver, Peter Csontos, Chris
Morgan (jointly), California State College at Hayward: 817, Roland F. Smith, Russell Sage College,
New York: 817; Ron Socnksscn, Pierce, Nebraska: 817, Charles H. Stansbury, Western Michigan
University: 817, and Phil Tracy, Liverpool, New York: 821.

A Well-Known Magic Hexagon

824. [March, 1972] Proposed by Paul S. Lemke, Rensselaer Polytechnic Institute.
Place the integers 1 through 19 so as to form a ‘‘magic hexagon’’: the sums in
each of the fifteen ways indicated are all the same:

¥ = % = ¥
/7 N/ N/ N\
L Nt T
s N/ N7 N\ N\
¥ " T T ¥ T
N/ N7 N7/ V4
¥ = ¥ T ¥ = ¥
N/ N7 Nv
¥ T ¥ T ¥

Solution by Charles W. Trigg, San Diego, California.

The desired third order (the number, n, of elements on each side is 3) row-magic
hexagon (there are other types) with every one of the 15 rows having the magic sum
of 38 is:

15 13 10
14 8 4 12
9 6 5 2 16
m t 7 19
18 17 3

A mirror image of this hexagon by T. Vickers appeared without comment on
Page 29 of the December 1958 Mathematical Gazette. It had been developed
independently by Clifford W. Adams, as reported by Martin Gardner on Page 116
of the August 1963 Scientific American. In A unique magic hexagon, Recreational
Mathematics Magazine (January 1964), Pages 40-43, I proved that this is the only
third order row-magic hexagon and that none exists for other values of n. The
uniqueness was confirmed by W. M. Daly and by G. W. Anderson using computers,
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and by Eduardo Esper6n using simultaneous equations but no computer. This
magic hexagon also appears on Page 101 of Joseph S. Madachy’s book, Mathematics
on Vacation (1966).

A related article is my Hetro-hexagons of the second order, School Science and
Mathematics (February 1966), Pages 216-217.

References and solutions also provided by Jeffrey H. Baumwell, Whitestone, New York; Mannis
Charosh, Brooklyn, New York,; Edward T. Frankel, Schenectady, New York; G. A. Heuer, Concordia
College, Minnesota; V. F. Ivanoff, San Carlos, California; Sam Kravitz, Cleveland Heights, Ohio;
Paul S. Lemke, Rensselaer Polytechnic Institute; Meredith A. Mackierman, Georgia Southern College;
Otto Mond, Suffern, New York,; Thomas E. Moore, Bridgewater State College, Massachusetts, Fred
Pence, Harrisonburg, Virginia,; Sally Ringland, Clarion State College, Pennsylvania; S.0. Schachter,
Philadelphia, Pennsylvania; Jan B. Schipmalder, University of California at San Diego; David Singmas-
ter, Polytechnic of the South Bank, London, England; Kenneth M. Wilke, Topeka, Kansas; and the
proposer.

Edward T. Frankel commented as follows:

This problem and the solution below have a long history. Clifford W. Adams came across the
problem in 1910. He worked on the problem by trial and error and after many years arrived at the
solution which he transmitted to Martin Gardner, editor of Mathematical Games in the Scientific
American.

Gardner sent Adams’ magic hexagon to Charles W. Trigg who by mathematical analysis found
that it was unique, disregarding rotations and reflections.

Adams’ result and Trigg’s work were written up in the Scientific American, August 1963, page 116.
Trigg did further research, then summarized known results and the history of the problem in his
fascinating article 4 unique magic hexagon, in Recreational Mathematics magazine, January-February
1964, pages 4043,

A Relation Between Two Angles

825. [March, 1972] Proposed by Henry W. Gould, West Virginia University.

One method of trisecting an angle uses compasses (to describe a circle with

7

radius R) and a straight edge with a distance between two marks equal to R. In the
figure CB = R with the result that ¢ = 6/3.
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An incorrect variant of this method uses a straight edge with arbitrary markings
such that CB = BA = x. In this case establish the relationship between ¢ and 6
and determine whether trisection is ever achieved. Extend the discussion to the case
CB = m(BA).

I. Solution by Vaclav Koneény, Jarvis Christian College, Texas.

If CB=BA = x then Rsinf = 2x sin¢ and x = 2R cos(f — ¢). Eliminating x
and R we get sin 0 = 4 cos(§ — ¢)sin ¢, which is the required relation between ¢ and
0. The trisection is achieved if 0 = 3¢. Thus substituting 3¢ for 0 into this equation
we get sin 3¢ = 4 cos 2¢ sin¢g. The solution of this equation in sin¢ is sing = + %
and sin¢ = 0. Considering 0 < ¢ < n/2, ¢ =7/6 and 0 = /2. (Trisection can be
achieved.) If CB = m(BA) we get Rsinf = (mx + x) sin¢ and x = 2R cos(6 — ¢)
where we have put B4 = x. Thus the relation between ¢ and 0 is sinf = 2(m + 1)
cos (0 — ¢)sin ¢. Trisection is achieved if 6 = 3¢ that is if sin 3¢ = 2(m + 1)cos2¢
sin ¢. The solution of this equation is sin¢ = + 3{(2m — 1)/m}*. So the trisection
can be achieved only if m >3 orm < — 4.

II. Solution by Charles W. Trigg, San Diego, California.

In the figure, in triangle CAO, 2x /sin(180° — ) = R [sin¢;
in triangle CBO, x [sin (0 — 2¢) = R [sin ¢.

Thus x /R = sin 0/2 sin ¢ = sin(0 — 2¢) [sin ¢.

Hence, if 6 = 3¢, then x = R. This is the only trisection situation except the
trivial, x = 2R, 0 = 0 = 3¢.

Furthermore, 2x [sin 6 = x [sin (6 — 2¢). Whereupon, 2(sin § cos 2¢ — cosfsin
2¢)=sin 0 and tanf = sinf /cosf = sin 2¢ /(2 cos 2¢ — 1).

If x = CB = m(BA), trisection still occurs when x = R, and in general

tanf = sin 2¢ /[(1 + m)cos 2¢ — 1].

Also solved by Michael Goldberg, Washington, D. C.; M. G. Greening, University of New South
Wales, Australia; Ralph Jones, University of Massachusetts; Vaclav Konecny, Hawkins, Texas; K.
R. S. Sastry, Makele, Ethiopia; Ron Soenksen, Pierce, Nebraska,; Steven Szabo, University of Illinois;
Phil Tracy, Liverpool, New York,; Kenneth M. Wilke, Topeka, Kansas; and the proposer.


http://www.jstor.org/page/info/about/policies/terms.jsp

1973] PROBLEMS AND SOLUTIONS 47

Minimal Stock Purchase

826. [March, 1972] Proposed by F. D. Parker, St. Lawrence University.

Two men, A and B, purchase stock in the same company at times ¢4, t,,15, ... t,,
when the price per share is respectively py, p2, P3», ..., P,. Their methods of investment
are different, however: A purchases x shares each time, whereas B invests P dollars
each time (we assume it is possible to purchase fractional shares). Show that unless
P1 = D, = ... = p,, the average cost per share for B is less than the average cost per
share for A.

I. Solution by Stephen K. Park, NASA, Langley Research Center, Hampton,
Virginia.

The solution to this problem is a direct, but interesting, application of the Schwarz

nequality. For, if one defines the real n-vectors a, b with components a; = p; /2

and b, = p{/* respectively, then from (a, b)? < (a,a) : (b, b) we obtain

n 1 n
2 < il .
"= (;:21 Pi) (i§1 p,)

with equality iff p, = p, = ... = p,. Equivalently,
n 1 &
<— X p
n 1 n o=
Yy —
i=1 Pi

and the result follows since the left and right hand sides of this inequality represent
the average cost per share for B and A respectively.

II. Solution by J. R. Hanna, University of Wyoming.

(1) Average cost per share for A4:
n 1 n
[1/(xn)] [x z pj] =— X p;=AM.
i=t B oj=1
(2) Average cost per share for B:
[P)] T [Plpl=n/ Z [1/p]=HM
Jj= j=

The average for A is an arithmetic mean (A.M.); and for B a harmonic mean
(H.M.) for the items p,(j = 1,...n). H.M. £ A.M. (equality holds only if all sample
values p; are identical). The average for B is less than the average for 4 unless all
p;’s are equal, then the two averages are equal.

Also solved by Donald Batman, MIT Lincoln Laboratory; Dermott A. Breault, Microsystems
Technology Corporation, Burlington, Maine; J. L. Brown, Jr., Pennsylvania State University; Fred
Dodd, University of South Alabama; Robert N. Eckert, Culver, Indiana; Ralph Garfield, The College
of Insurance, New York,; Michael Goldberg, Washington, D. C.; Richard A. Groeneveld, Iowa State
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University; J. R. Hanna, University of Wyoming; James C. Hickman, University of Iowa; Thomas W.
Hill, Jr., Purdue University; Steven Jamke, University of California, Berkeley;Allan W . Johnson, Jr.,
Defense Communications Agency, Washington, D. C.; Ralph Jones, University of Massachusetts;
Lew Kowarski, Morgan State College, Maryland; NorbertJ. Kuenzi, Oshkosh, Wisconsin; Otto Mond,
Suffern, New York; Roger H. Marty, Cleveland State University, Ohio; E. B. McLeod, Cali-
fornia State University, Long Beach; Lester Meckler, Levittown, New York; John E. Prussing,
University of Illinois; Tim Robertson, University of Iowa,; Rena Rubenfeld, New York City Community
College; K. R. S. Sastry, Makele, Ethiopia; David R. Stone, Georgia Southern College; Phil Tracy,
Liverpool, New York; Ronald H. Whiffen, Flushing, New York; Kenneth M. Wilke, Topeka, Kansas;
and the proposer.

Triangle Area Ratios
827. [March, 1972] Proposed by V. F. Ivanoff, San Carlos, California
Prove that in a triangle with sides a, b, ¢ and angles «, 5, y:

cota _ cot 8 _ coty
b2+c2—a2_c2+a2—b2—a2+b2—c2

and find the geometric interpretation of the ratios.
Solution by Leon Bankoff, Los Angeles, California.

cot o _ coto 1 _
b2 +c¢2—a?  2bccosa 2bcsin o

€
4A
cot f8 cot 1 1

2+a2—b® 2accosp 2acsin f . 4A

cot y _ coty 1 1

a? + b2 —c2 2abcosy 2absiny 4A

The three given ratios are equal since each is equivalent to the reciprocal of 4A, where
A is the area of the triangle. Another way of expressing this ratio is R /abc, where R
is the circumradius of the triangle.

Also solved by Olowoye S. Adegboye, Ahmadu Bello University, Kano, Nigeria; Merrill Barnebey,
Holmen, Wisconsin; M. T. Bird, California State University, San Jose,; V. S. Blanco, University of
South Alabama; Dermott A. Breault, Microsystems Technology Corporation, Burlington, Massa-
chusetts; Richard L. Breisch, Royersford, Pennsylvania; Elio E. del Canal, Attleboro, Massachusetts;
Mannis Charosh, Brooklyn, New York; Robert W. Chilcote, Bedford High School, Bedford, Ohio;
Fred Dodd, University of South Alabama; Ragnar Dybvik, Tingvall, Norway, Robert N. Eckert,
Culver, Indiana,; Gabriel V. Ferrer, University Autonoma de Baja California, Mexico,; Herta T. Freitag,
Hollins, Virginia; Ralph Garfield, College of Insurance, New York,; Michael Goldberg, Washington,
D. C.; H. W. Gould, West Virginia University; J. R. Hanna, University of Wyoming; Robert S. Hatcher,
Santa Catalina School, Monterey, California; Ralph Jones, University of Massachusttes; Dan Kellman,
Philadelphia, Pennsylvania; Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan; Vaclav
Konecny, Jarvis Christian College, Texas; J. D. E. Konhauser, Macalester College, Minnesota;, V.
Linis, University of Ottawa, Canada; Lester Meckler, Levittown, New York; Virginia T. Merrill,
Solon, Maine, Gabriel Rosenberg, Pace College, New York; Rina Rubenfeld, New York City Community
College; W. M. Sanders, Madison College; E. P. Starke, Plainfield, New Jersey; David R. Stone,
Georgia Southern College; Robert A. Sutton, Jr., Thomas Jefferson High School, San Antonio, Texas;
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Steven Szabo, University of Illinois; Phil Tracy, Liverpool, New York,; Charles W. Trigg, San Diego,
California; William Wernick, City College, New York,; Kenneth M. Wilke, Topeka, Kansas; and the
proposer.

N-linked M-chains

828. [March, 1972] Proposed by Warren Page, New York City Community
College.

Call an n-digit number x = x,Xx, ... x, an n-linked m-chain if x, + x, = x, + x,_,
= X3 + Xy—2... =m, With X, 41y, =m when n is odd. The number 25614 for
example is a 5-linked 6-chain.

What is the largest natural number n such that for every n-digit number
X1Xg oo Xy X1 F Xy [ X1X5 000 Xy — X Xp— 1 ...xll is a k-linked 9-chain, k < n?

Can these concepts be extended further?

Solution by Robert N. Eckert, Culver, Indiana.

For n =2, the difference x,x; — x;x, must be a multiple of 9 greater than 0
(if x, is greater than x,), since x,x, and x;x, are both congruent to the same number
(x; + x,) in modulo 9. Thus, it will either equal 9 itself, a 1-linked 9-chain, or some
two digit number y,y,, which, being a multiple of 9, must have the sum of its digits,
¥1 + 2, equal to 9, making it a 2-linked 9-chain. Thus, 73 —37 =36, 3+ 6=09.

For n = 3, in taking the difference x,x,x; — x3X,X;, we find that the rightmost
subtraction will be negative if x, is greater than x;, and therefore that a 1 must be
borrowed from x,. Then, the next to rightmost subtraction will be (x, — 1)—x, and
will also require a borrowing to give final answer 9. Thus, the middle digit of the final
answer will always be 9, and the total sum of the digits must be a multiple of 9, since
the difference is a multiple of 9, as above. So the sum of the first and last digits of the
answer will be a multiple of 9. This sum cannot be 0 and cannot be 18 or over (since
the only two digits summing up so high are 9 and 9, and it is impossible for the
difference of two three-digit numbers to be 999). Therefore, it is 9, and the difference
is a 3-link 9-chain. Thus, 573 — 375 = 198.

For n =4, the counterexample 2201 — 1022 = 1179 shows that it is not true
for all 4-digit numbers. Thus, 3 is the highest such. These results are perfectly general:
the proofs that the property holds for two and three digit numbers still hold for base
twelve, substituting 11 for 9 throughout, or for base five, substituting 4 for 9, etc., and
the counterexample 2201 for n = 4 exists in all bases (except, of course, for base two).

Also solved by Michael Goldberg, Washington, D. C.; Rina Rubenfeld, New York City Community
College; David R. Stone, Georgia Southern College; Phil Tracy, Liverpool, New York; and the
proposer.

Unique Representation of Integers
829. [March, 1972] Proposed by John D. Baum, Oberlin College.

It is well known that a positive integer can be written as the sum of consecutive
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integers if and only if it is not a power of two. If a positive integer is so expressible,
its representation is not necessarily unique. For example,

15=74+8=44+5+6=1+2+4+34+4+5.

For integers of what form are their expressions as sums of positive consecutive
integers unique?

Solution by E. P. Starke, Plainfield, New Jersey.

To be expressible uniquely as the sum of consecutive positive integers, a positive
integer must be of the form 2°p, where a is a nonnegative integer and p is a prime.

This is a special case of the result of Problem E2225, American Mathematical
Monthly, 1971, Page 199, where it is shown that the number of representations of a
positive integer n as a sum of consecutive positive integers equals the number of odd
divisors of n. This and similar problems are discussed also in Polya, Mathematical
Discovery, V. II (1965) Problems 15.48, 15.49, 15.50.

Note. The first sentence of the Proposal should state ‘‘as the sum of consecutive
positive integers.”” It is not otherwise true. E.g., 4=(—=3)+(=2)+(—1) +0
+14+24+3+4

Also solved by Merrill Barnebey, Holmen, Wisconsin; Donald Batman, MIT Lincoln Laboratory;
Ruth E. Bauman, Kalamazoo, Michigan; Elio E. del Canal, Bishop Feehan High School, Attleboro,
Massachusetts; Robert N. Eckert, Culver, Indiana, Richard A. Gibbs, Fort Lewis College, Colorado,
Marc Glucksman, El Camino College, California; Michael Goldberg, Washington, D. C.; M. G.
Greening, University of New South Wales, Australia; Richard A. Groeneveld, Iowa State University;
Ralph Jones, University of Massachusetts; Vaclav Konecny,Jarvis Christian College, Texas; Norbert
J. Kuenzi and Bob Prielipp (jointly), University of Wisconsin at Oshkosh; V. Linis, University of Ottawa,
Canada; Arthur Marshall, Madison, Wisconsin; John W. Milsom, Butler County Community College,
Pennsylvania; John D. Moore, Niagara University, New York,; Problem Solving Group, Bern, Switzer-
land; Marilyn Rodeen, San Francisco, California;, The 3 S Group, New York, New York; David R.
Stone, Georgia Southern College; Phil Tracy, Liverpool, New York; Kenneth M. Wilke, Topeka,
Kansas; James W. Wilson, University of Georgia; Charles W. Trigg, San Diego, California; and the
proposer.

A Smallest Partition

830. [March, 1972] Proposed by Frank Dapkus, Seton Hall University.

Find a right triangle with the smallest area that can be partitioned into two
triangles with all integral sides.

Solution by J. W. Wilson, Athens, Georgia.

The hypotenuse of a right triangle is the diameter of its circumcircle. Hence the
median to the hypotenuse is + the length of the hypotenuse. Any right triangle with
sides corresponding to a Pythagorean triple and the length of the hypotenuse an
even number can thus be partitioned into two triangles with integral sides.

A Pythagorean triple is of the form
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(a,b,0) = (2xy, x* — y*, x* + y?)

where x and y are integers and x > y. The first three Pythagorean triangles, in order
of the area of the corresponding right triangles are (4, 3, 5), (6,8, 10) and (12, 5, 13)
corresponding to (x,y) of (2,1), (3,1) or (3,2) respectively.

Now the (4,3, 5) triangle cannot be partitioned into two triangles with integral
sides. For, if the partition was accomplished by segment from one of the acute angles
to a leg, then one of the two triangles in the partition would be a right triangle of
smaller area and there is no right triangle with integral sides with an area less
than that of the (4,3, 5) triangle. If the partition was attempted by a segment from
the right angle to the hypotenuse at a point n units from vertex of the 60° angle,
n=1,2,3 or 4, then the partitioning segment is of length k,

- [

and k is not an integer for n = 1,2,3 or 4.
The (6, 8, 10) triangle is the next largest and it can be partitioned into two triangles
with integral sides by the median to the hypotenuse.

Also solved by Carl A. Argila, De La Salle College, Manila, Philippines,; Leon Bankoff, Los Angeles,
California; Merrill Barnebey, Holmen, Wisconsin; Michael Goldberg, Washington, D. C.; J. A. H.
Hunter , Toronto, Canada; Ralph Jones, University of Massachusetts; Vaclav Konecny, Jarvis Christian
College, Texas; K. R. S. Sastry, Makele, Ethiopia; E. P. Starke, Plainfield, New Jersey,; Phil Tracy,
Liverpool, New York; Charles W. Trigg, San Diego, California; Zalman Usiskin, University of Chicago;
William Wernick, City College of New York,; Kenneth M. Wilke, Topeka, Kansas; and the proposer.

Comment on Problem 780

780. [November, 1970, and September, 1971] Proposed by Simeon Reich, Israel
Institute of Technology, Haifa, Israel.

Let there be given a plane bounded closed convex set with interior points and
with boundary of length p. If p < n(2 + /3)/3, then one can rotate and translate
this set in the plane so that in one position at least it will contain no lattice points.

Comment by the proposer.

Recall that a plane set K is said to be a covering set if for any position of K in
the plane it contains at least one lattice point. Let P = inf {p: p is the perimeter of C,
a plane bounded closed convex covering set}.

The bound P 2 4 obtained in [2] can be improved. Indeed, the fact that every
eligible C must contain a unit square may be combined with the fact that a rectangle
of dimensions a by b, a < b, is a covering set if and only if a > 1 and b = \/f, to

yield P > 2+4J1 - J2/2 ~4.16.
Professor J. J. Schiiffer (Carnegie-Mellon University) conjectures that the covering
set which is smallest in area [1] is also smallest in perimeter. Its perimeter equals
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2+ \/5 +% log(3 + 2\/5) ~4.30. Note that the isoperimetric inequality implies
that P >4 ./n/3 ~ 4.09.

I am indebted to Professors J. Hammer (University of Sydney) and J. J. Schiffer for their com-
munications.

References

1. J. J. Schiffer, Smallest lattice-point covering convex set, Math. Ann., 129 (1955) 265-273.

2. H. G. Eggleston, Problems in Euclidean Space, Pergamon Press, New York, 1957.

3. Ivan Niven and H. S. Zuckerman, Lattice points covered by plane figures, Amer. Math.
Monthly, 74 (1967) 354,

Comment on Problem 805

805. [September, 1971, and May, 1972] Proposed by Charles W. Trigg, San
Diego, California.

Find the unique triangular number A, which is a permutation of the ten digits
and for which n has the form abbbb.

Comment by Cecil G. Phipps, Tennessee Technological University.

The statement of the problem is slightly incomplete or misleading. Furthermore,
the solution, as printed, does not consider all possible cases.

A triangular number A, having ten digits must have a value of n such that
4 x 10* < n < 14.2 x 10*. Under the restrictions given the number n must have
either of two forms: (1) abbbb or (2) abbbbb; whereas the statement of the problem
suggests only three b’s and the printed solution considers only the form with four b’s.

Under the given conditions, a triangular number of form (1) must have a £ 4;
and one of form (2) must have abb < 142. Hence under these conditions, in addition
to the forms considered, one must also examine the forms (1 + 5b) and (1 + 5b + 1)
as multiples of 9. There are two such pairs, namely (1,5) and (1,7). But, since 15
and 17 are greater than 14, the corresponding triangular numbers have more than ten
digits.

Comment on Problem 807

807. [September, 1971, and May, 1972] Proposed by Norman Schaumberger
Bronx Community College.

Let (x;), i =1,2,3... be an arbitrary sequence of positive real numbers, and set
k k 1/k
Ak=lv/k2xi-—(nxi) .
i=1 i=1

If n = m prove that nA, = mA,,.
Comment by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan.

The result here is known and is contained in a class of inequalities which are
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sometimes called Rado type inequalities (see D. S. Mitrinovic, Analytic Inequalities,
Springer-Verlag, Heidelberg, 1970, pp. 94, 98-102). Related to these inequalities
are the ones analogous to

(G} 5 (Gemi)™

which are sometimes called Popoviciu type inequalities. Here, G, and A4, denote the
geometric and arithmetic means of x,, x,, ... X,,, respectively. A similar proof can also
be given for the latter inequality. Just let

Xp=Mxs+ %X+ ... +%,-1)
giving

I (-1t
a+»y="

It follows easily that the r.h.s. is the maximum value of the Lh.s. which is taken on
for A=1/(n—-1).
Comment on Q546

Q546. [May, 1972] If n is an integer greater than 2, prove that n is the sum of the
nth powers of the roots of x" — kx — 1 =0.

[Submitted by Erwin Just]
Comment by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan.

One can obtain further results in a similar fashion. If T}, T5,... T, denote the
elementary symmetric functions of x, x,, ... x,,i.e.,

P(x)=TI(x —x;) =x"— T;x"" ' + Tp,x"" 2 — ... + (= 1)'T,
and if
Se=2%2 x

i=1

then the Newton formulae are given by

(A) Sk - Tlsk_l + Tsz_z T eee + (— l)k_lTk_1S1+
(=1)%kT, =0 (k<n),
(B S =T Sk-1 + TSz — ... +(=1)'TLS,_,=0 (k> n).

If Px)=x"—ax—1, then T,_;=(—1"a, T,=(—1)""" and T1=T,= ...
T,_, = 0. 1c then follows that S,,=0for m=rn+1, rn+2,... r + Dn—r — 2
(1 £ r £ n — 3). The nonvanishing power sums are given by

S”_l = (n - l)a, Sn =n, Szn_z = (n - l)az,
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S2n—1 = (2n - 1)(1, SZn =n, S3n—3 = (n - 1)a3’

Sin-z2 = (Bn— 2)02, S3,-1=0n—Da, S;,=n, etc.

ANSWERS
A557. A fourth power of an integer modulo 16 must be either 0 or 1. Thus, if a
solution exists, then
x* + 2y* + 3z* — dw* = a, + 2a, + 3a; — 4a, (mod 16)

in which each of the a; is either 0 or 1.
Computation reveals that

a; + 2a, + 3a; — 4a, = k (mod 16)
in which the only possible values of k, modulo 16, are
0,+1,+2, +3, +4,5 or 6.
This proves that
x* +2y* + 3z —dw* =7 (mod 16)
has no solutions, and the desired conclusion is an immediate consequence.

AS558. Let R =(cos ay, COS a,,... cos a,) denote the unit vector corresponding to
the incoming ray. Here a; denotes the angle R makes with the axis x;. After reflection
off any face (say the one normal to x,), the new ray is given by

R =(—cos ay, cos a,...cos a,), etc.
Consequently, after n reflections, the final ray is given by

R, = (—cos a;, —COS d,... — COs a,) = — R.
A559. Squaring a2, — 10a, + a2 = 1. Solving for a,: a, = 5a,,,— \/2—~4a3+ 1.:,_1.
Reducing n by one in the latter equation and adding it to the given equation we get
4,41 =10a,—a,_,. Since a, = 0 and a, = 1 all the a,’s are integers.

A560. No. Addition is not distributive over multiplication as 1 + 11 # (1 +1)
(1 + 1) shows. In fact (R*, -) is an abelian grous and (R*, +) is a semigroup and
the missing distributivity is the only missing property among ring properties. Here
we do not require a ring to have an identity.

A561. No. If the mean of twin primes a — 1 and a + 1 is a = b? then a — 1 = b?
—1=(b+1) (b—1) which is a prime only b =2 and a =4. In fact no higher
power can be a mean of twin primes. If it be ¢2*, then @ — 1 = ¢2" — 1 which has a
factor ¢” — 1. If the power be c*"*1, then a + 1 has a factor of ¢ + 1. Each of these
stated factors exceeds one.

(Quickies on page 43)
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IN MATHEMATICS

PRECALCULUS MATHEMATICS

By Hal G. Moore, Brigham Young Univ.

Prepares students to study calculus. The usual concepts of college algebra
and trigonometry are unified through the study of elementary functions. Con-
cepts are built intuitively before any attempt to be rigorous.

Jan. 1973 Approx. 480 pp $9.95

INTERMEDIATE ALGEBRA

By Richard J. Easton, and George Patterson Graham, Jr.,

both of Indiana State Univ.

Introduces manipulatory skills and problem solving by providing a large
number of examples, and then by giving many exercises co-ordinated with the
examples. Modern approach; introduces set notations as needed.

Jan.1973  Approx. 320 pp $8.95

ELEMENTARY PLANE GEOMETRY

By R. David Gustafson, and Peter D. Frisk, both of Rock Valley College

The concise format of this traditional approach allows the student to study
deductive proof very early. Differs from other texts in that geometric construc-
tions are used abundantly. Balances intuitive and rigorous approaches.

Jan.1973 320 pp $8.50

ELEMENTARY ALGEBRA: Structure and Skills,

3rd Edition

By Irving Drooyan, Walter Hadel, and Frank Fleming,

all of Los Angeles Pierce College

This modern structure-oriented beginning text covers a year of high school
work in one semester. Much new material on the techniques of graphing and
the distance between two points. Formal proofs are now placed in the back.
Jan. 1973 512 pp $9.95

For your complimentary copy, please contact your Wiley representative or write Ben Bean,
Dept. 1148, N.Y. office. Please include title of course, enroliment, and present text.

Prices subject to change without notice

JOHN WILEY & SONS, Inc. “'i"!'

605 Third Avenue, N.Y., N.Y. 10016 In Canada: 22 Worcester Road, Rexdale, Ontario
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improved mathematical understanding

ALGEBRA AND TRIGONOMETRY
in two editions:
Standard Hardbound One-Volume Edition
Four Programmed Paperbound Volumes
THOMAS A. DAVIS, DePauw University
A comprehensive presentation of algebra and trigonometry for general or pre-
calculus use, this textbook combines a concise, easy-to-read style with a logical,
carefully worked-out sequence of material. Both editions of Algebra and Trig-
onometry present the same material in the same sequence: a review of the real
number system and elementary algebra; a study of sets and functions; a thorough
treatment of trigonometry and trigonometric functions; and a study of college
algebra and theory of equations, with exponential, logarithmic, and polynomial
functions. The identical structuring of both versions makes it possible for the
instructor to choose among several teaching options—using either edition inde-
pendently or in combination with each other—depending on his own prefer-
ences and the specific needs of his students. A separate Answer Key accompanies
the standard textbook edition; selected answers also appear in the textbook
itself, and all answers are included in the programmed version.
Hardbound Edition. 529 pages. $10.95

Paperbound Edition: L
Volume I: Real Numbers and Elementary Algebra 254 pages. $4.50
Volume II: Sets and Functions 195 pages. $4.50
Volume Ill: Trigonometry 392 pages. $4.95

Volume IV: Algebra: Functions and Theory of Equations
304 pages. $4.95

INTERMEDIATE ALGEBRA

FRANK J. FLEMING, Los Angeles Pierce College
Intermediate Algebra makes algebra accessible to the average student, offering
sound, clear coverage of all the topics treated in the standard intermediate alge-
bra course. Concepts of elementary algebra are first reviewed and then extended
beyond first-degree polynomials, with emphasis on those with real number
variables. Throughout the book, each concept is presented in a separate brief
section and immediately illustrated by one or more worked-out examples. Each
major section is followed by a series of graded exercises, and each chapter
concludes with a summary of important points and a set of review problems.
More than 100 illustrations help the student visualize major problems and a

second color is used functionally throughout. With an Answer Key.
426 pages. $8.95

|'H.| Harcourt Brace Jovanovich, Inc.
New York ¢ Chicago * San Francisco ¢ Atlanta
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Important new textbooks for

MATHEMATICS

A Liberal Arts Approach
MALCOLM GRAHAM, University of Nevada

A brief survey of general mathematics for humanities students, this new text-
book focuses on mathematical concepts and principles rather than on mathe-
matical manipulations. Throughout the text, Professor Graham uses a clear,
interesting, highly readable style and draws on such areas as topology and num-
ber theory for problems that are significant yet can be stated simply; thus, he
makes important concepts understandable to the non-mathematician. In addi-
tion, he explains the historical and cultural significance of various topics where
applicable and includes interesting references to the personalities involved in the
development of different branches in mathematics. Answers to approximately
half the problems are given in the book; the remaining answers, as well as many
complete solutions, are provided in an accompanying Solutions Manual.

382 pages (probable). Publication: March 1973

LINEAR ALGEBRA

Second Edition
ROSS A. BEAUMONT, University of Washington

The Second Edition of this highly successful textbook provides a brief, clearly
written exposition of the essential topics of linear algebra. The book is con-
structed around the central theme of finite-dimensional real vector spaces and
their linear transformations. The field of real numbers is consistently used as
the ground field of scalars, thus presenting the fundamental results of linear
algebra in a form most useful for other undergraduate courses in mathematics,
physics, statistics, and engineering. Student aids for this edition include: ex-
panded discussions and proofs of theorems; numerous worked-out examples;
new exercises, ranging from routine drill questions to those of a more theoretical
nature; and answers to selected exercises at the back of the book.

Paperbound. 276 pages. $6.95

MODERN

ELEMENTARY MATHEMATICS
MALCOLM GRAHAM, University of Nevada

A modern treatment of mathematics for prospective and in-service elementary
teachers that provides an analysis of all the mathematics found in the elementary
school curriculum, with especially thorough coverage of sets, number systems,
mathematical operations, and geometry, and an introduction to statistics and
probability. With a Solutions Manual. 418 pages. $8.95
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Math professors
tell why they like:

Willerding &
Hayg{grd:

Drooyan &

Wooton:

Mathematics: The Alphabet of Science, 2nd Edition
($9.95) Instructor’s Manual.

“I like the fact that each chapter continues long enough
to get into some of the interesting, advanced problems.
This gives the better students a challenge. Also, if the
whole class actually gets enthused over a section, it then
becomes possible to pursue the matter further. | believe
this last point is why we chose to adopt this text over the
current one we are using.” —J. E. Koehler, Seattle Univ.

Elementary Algebra for College Students, 3rd Edi-

tion ($8.95) Study Guide by Charles Carico.

“Very well written. Clear exposition. Chapter material

presented in a logical manner. Sample problems pre-

sented in a manner which the student can understand.”
—M. A. Chmielewski, Virginia State College

Elementary Statistics, 3rd Edition ($10.25)

Already in use at 150 colleges and universities!

“In the elementary statistics book, Hoel blends statistical
theory with applications in an easy, straight-forward
manner which is appealing to the concerned statistics
student.” —R. M. Johnston, Midland Lutheran College

For more information about these 3 successful math texts, contact your local Wiley represen-
tative, or write to Ben Bean, Dept. 2023, N. Y. office. Please include your course title, enroll-

ment, and present text.

"'-Ieg JOHN WILEY & SONS, Inc.
i 605 Third Avenue, New York, N.Y. 10016
In Canada: 22 Worcester Road, Rexdale, Ontario

Prices subject to change without notice.
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For clarity in counting...

HANDBOOK OF MATHEMATICAL TABLES AND FORMULAS, Fifth Edition
Richard S. Burington

1973, 500 pages, (009015-7), $5.50

This text has been designed to aid those in academic, professional, scientific,
engineering, and business fields in which mathematical reasoning, processes,
or computations are required. A serious effort has been made to retain
information of a more traditional nature while incorporating those definitions,
theorems, formulas, and tables needed for contemporary applications.

Each subject treated is developed in a logical manner, to enable the user

to interpret the information easily and properly.

BASIC MATHEMATICAL CONCEPTS, Second Edition
F. Lynwood Wren, California State University, Northridge

1973, 608 pages (tent.), (071907-1), $10.50

This text is designed for the study of those concepts of number, algebra,

and geometry basic to intelligent teaching of mathematics in the elementary
school. Beginning with the system of natural numbers, the author discusses

its fundamental nature and then explains the inadequacies which call for
extensions—to the domain of integers, the field of rational numbers,

the field of real numbers, and finally the field of complex numbers. The remaining
chapters present limited applications in the areas of geometry and algebra.

BASIC MATHEMATICAL CONCEPTS: A PRACTICE BOOK
F. Lynwood Wren, California State University, Northridge

1973, 150 pages (tent.), (071910-1), $3.50 (tent.)

Useful either in conjunction with or independent of the author’s text, BASIC
MATHEMATICAL CONCEPTS, Second Edition, this practice manual
contains a number of approaches to the material differing sharply from
the presentations in the text. The developmental pattern pursues two

main purposes: to provide ample practice and review in basic operational
procedures and to direct critical attention to the fundamental principles
upon which these procedures are based.

FOUNDATIONS OF MATHEMATICS: With Applications in the Management and
Social Sciences, Second Edition

Grace A Bush, Kent State University, and John E. Young,
Southeast Missouri State College

1973, 466 pages (tent.), (009275-3), $11.50 (tent.)
An Instructor’s Manual will be available.

Designed to introduce non-science students to the fundamentals of the real
number system, this text includes applications of real numbers to such
areas as probability, mathematics of finance, linear programming, matrices,
calculus, and basic statistics. Little trigonometry is used.
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.o s cOmMputing...

COLLEGE ALGEBRA
E. Richard Heineman, Texas Tech University

1973, 332 pages (tent.), (027936-5), $8.95
An Instructor’'s Manual will be available.

Designed for a freshman level algebra course, this text seeks to instill in
students a realization that mathematics is a logical science and to develop
their capability and understanding of those concepts which have traditionally
constituted college algebra. The author achieves these goals by using
modern terminology and the postulational approach to the properties

of real numbers—together with clarity of presentation and carefully

graded sets of diversified problems.

MODERN ALGEBRA AND TRIGONOMETRY, Second Edition
J. Vincent Robison, Emeritus, Oklahoma State University

1973, 431 pages, (053330-X), $9.50
An Instructor’'s Manual will be available.

This text develops and integrates traditional algebra and trigonometry

through the use of concepts and techniques of set theory. The choice of
topics, necessarily limited in a book of this length, has been influenced

by the recommendations of both the Committee on the Undergraduate Program
in Mathematics and the School Mathematics Study Group. Designed for
students having no more than three semesters of high school algebra, the
exposition is based on a judicious use of mathematical rigor and intuition,

and a large number of worked examples illustrate concepts and

provide methods of attack.

CONTEMPORARY TRIGONOMETRY
Howard E. Taylor, West Georgia College, and Thomas L. Wade,
Florida State University

1973, 224 pages (tent.), (067640-2), $7.95

This text presents a concise, modern introduction to the field with emphasis
on the trigonometric functions, their inverses, and their properties.

The approach utilizes the basic concepts of the real number and rectangular
coordinate systems, together with a small amount of set notation and a

few elementary concepts of sets. Trigonometric functions and their inverses
are viewed as non-empty sets of ordered pairs, no two of which have

the same first entry. Historical notes are also provided.
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... and calculating...

CALCULUS AND ANALYTIC GEOMETRY

Sherman K. Stein, University of California, Davis
1973, 920 pages (tent.), (061006-1), $13.95 (tent.)
A Solutions Manual will be available.

Designed for use in a general undergraduate calculus course, this completely
new text offers several distinctive features: 1) incorporation of all necessary
analytic geometry into the flow of the course; 2) early treatment of the derivatives
of all elementary functions; 3) separation of integration over plane regions
from integration over solid regions by six chapters; 4) approximately

4000 exercises divided into three levels ranging from the very simple and
elementary through the extremely difficult and complex; and 5) a student-
oriented approach, with a summary and study guide (including lists of

terms, symbols, key facts, formulas, and theorems) and a guide quiz

at the end of each chapter.

CALCULUS: AN INTRODUCTION TO APPLIED MATHEMATICS

Harvey P. Greenspan and David Benney, both of
Massachusetts Institute of Technology

1973, 800 pages (tent.), (024342-5), $13.95 (tent.)
A Solutions Manual will be available.

The authors of this text state that ‘‘the difficult task of dealing with nature
and the social sciences requires a special approach that stresses intuition,
versatility, and a willingness to explore and to test. . . . From this viewpoint,
complete rigor is unnecessary and even counterproductive. The intent

here is a sound mathematical presentation developed to the point of
optimum return. .. .”" The text emphasizes the topics of calculus which are
of greatest importance in applied mathematics, science, and technology.
Special attention is given to the formulation of problems, numerical analysis,
approximation methods, perturbation theory, limits, differentiation,
integration, series, vectors, and vector calculus.

.. .it’s clearly a McGraw-Hill text.

(clip here)
To order, simply fill out this coupon and return to:
Norma-Jeanne Bruce (Dept. MM)/College Division, 27 :‘Y"
McGRAW-HILL BOOK COMPANY 7wy
1221 Avenue of the Americas/New York, New York 10020 . .H .
—— Burington (009015-7) — Wren (071907-1) —_ Wren (071910-1)
—— Bush-Young (009275-3) — Heineman (027936-5) - Robison (053330-X)
—— Taylor-Wade (067640-2) . Stein (061006-1) - Greenspan-Benney (024342-5)

Within ten (10) days of receipt of book(s) | will remit full price of book(s) plus local sales
tax, postage, and handling. (McGraw-Hill pays postage and handling if 1 remit in full with
this coupon.) I will return unwanted book(s) postpaid.

Name Affiliation

Address City State Zip

Prices subject to change without notice. Offer good in USA only.
62 Rev MO0/2010762
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Fifth Edition 1972

GUIDEBOOK

DEPARTMENTS IN THE MATHEMATICAL SCIENCES
IN THE
UNITED STATES AND CANADA

... intended to provide in summary form information about the location, size,
staff, library facilities, course offerings, and special features of both undergrad-
uate and graduate departments in the Mathematical Sciences . . .

135 pages and 1750 entries.
Price: $1.30

Copies may be purchased from:
MATHEMATICAL ASSOCIATION OF AMERICA

1225 Connecticut Avenue, NW
Washington, D.C. 20036

Just Published—

DEDEKIND SUMS

BY HANS RADEMACHER, UNIVERSITY OF PENNSYLVANIA, AND
EMIL GROSSWALD, TEMPLE UNIVERSITY
(CARUS MONOGRAPH #16)

Chapter titles are: Introduction, Some Proofs of the Reciprocity Formula,
Arithmetic Properties of Dedekind Sums, Dedekind Sums and Modular Trans-
formations, Generalizations, Some Remarks on the History of Dedekind Sums.

One copy of each Carus Monograph may be purchased by individual members
of the Association for $4.00 each; additional copies and copies for nonmembers
are priced at $8.00 each.

Orders with remittance should be sent to:

MATHEMATICAL ASSOCIATION OF AMERICA
1225 Connecticut Avenue, N.W.
Washington, D.C. 20036
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New Texts for1973
Math Courses

FINITE MATHEMATICS WITH APPLICATIONS

By Abe Mizrahi, Indiana University, Gary Indiana; and Michael Sullivan,

Chicago State University

An introduction to probability, modeling, linear programming, matrices, directed graphs,
game theory, and statistics utilizing real-life applications from the business, social and
behavioral sciences. Features a chapter on the mathematics of finance.

1973 512 pages $10.95

ELEMENTARY LINEAR ALGEBRA

By Howard Anton, Drexel University.
Presents the fundamentals of linear algebra in the clearest possible way, using over 200
computational examples and geometrical interpretation. Moves from systems of linear equa-
tions and matrices to determinants, vectors in 2-space and 3-space, vector spaces, linear
transformations, eigenvalues, eigenvectors, and quadratic forms, ending with an introduc-
tion to numerical methods.

1973 330 pages $10.25

ELEMENTARY ALGEBRA: Structure and Skills
Third Edition
By Irving Drooyan, Walter Hadel, and Frank Fleming, all of Los Angeles Pierce College.
The third edition of this modern, structure oriented beginning algebra text reflects seven
years of classroom experience. As a result, additional emphasis has been given to tech-
niques of graphing and new sections on order of operations, numerical evaluation, and the
distance between two points have been added.

1973 Approx. 370 pages $9.95 (tent.)

ELEMENTS OF STATISTICS

By E. W. Averill, Clarion State College.

Basic statistics for students with no mathematical background beyond high school algebra.

Includes easy-to-understand treatments of descriptive statistics, probability, sampling,

regressions and correlation, nonparametric statisics, chi-square, and analysis of variance.
1972 268 pages $10.95

INTRODUCTION TO THE THEORY OF STATISTICS

By Harold J. Larson, Naval Postgraduate School.

Covers the commonly used statistical methods in a clear and mathematically precise way.
Offers students in mathematical statistics courses an unusual number of realistic examples.
from applied fields.

Fall 1972 Approx. 300 pages In Press

For more information, contact your local Wiley representative,
or write Ben Bean, Dept. 2925, New York office.
Please include your present text, enroliment, and course title.

. JOHN WILEY & SONS, Inc.
.“ lelJ 605 Third Avenue, New York, N.Y. 10016
l In Canada: 22 Worcester Road, Rexdale, Ontario

Prices subject to change without notice.
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Are you overwhelming
students in business,
the biological and
social sciences?

%

After all, they’re not mathematics and science majors.

Here is a calculus text specifically developed for students in
business and the biological and social sciences. The approach,
the examples, the number and kind of applications, and the
problems are all designed to teach these students how to use
calculus to solve problems in their disciplines.

An unusual format, in two colors, permits a wealth of
marginalia— biographical and historical notes and illustrations,
figures and diagrams, recall of previous material, references,
and space for note taking— that engages and benefits this
audience.
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INTRODUCTORY CALCULUS
WITH APPLICATIONS
Jogindar Ratti and M.N. Manougian
University of South Florida

January/ with Solutions Manual

For your free examination copy write the
regional office serving you.

HOUGHTON MIFFLIN

Publisher of The American Heritage
Dictionary of the English Language
BOSTON 02107 / ATLANTA 30324 / DALLAS 75235
GENEVA, ILL. 60134 / NEW YORK 10036°

PALO ALTO 94304

*Effective March 1, 1973: Pennington-Hopewell Road.
Hopewell, N.J. 08525
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